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ABSTRACT 
In this paper, we present the development of a “reconstruction 
kit” for e-textiles, which transforms fixed-state construction 
kits—maker tools and technologies that focus on the creation of 
semi-permanent projects—into flex-state construction kits that 
allow for endless deconstruction and reconstruction. The kit uses 
modular pieces that allow students to both solve and create 
troubleshooting and debugging challenges, which we call 
“DebugIts.” We tested our prototype in an after-school workshop 
with ten high school students, and report on how they interacted 
with the kit, as well as what they learned through the DebugIt 
activities. In the discussion, we delve into the affordances and 
challenges of using these kits as both learning and assessment 
tools. We also discuss how our pilot and prototype can inform 
the design of reconstruction kits in other areas of making.1   
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 1 INTRODUCTION 
Making has become popular within educational sites because of 
its ability to promote science, technology, engineering, and math 
(STEM) learning and computational thinking (CT) skills [1, 10]. 
Many efforts to support maker activities have focused on the 
design of “construction kits,” which Resnick and Silverman [20] 
describe as “systems that engage kids in designing and creating 
things” (p. 1). These kits can be situated on-screen (e.g., Scratch, 
StarLogo), off-screen (e.g., Lego Bricks, littleBits), or in combined 
‘hybrid’ spaces with software and hardware elements (e.g., Lego 
Mindstorms, Arduino). Designing high quality construction kits 
requires creating easy-to-use interfaces and materials that allow 
even novice makers to design and create a wide range of projects 
to learn about powerful ideas in STEM disciplines such as 
feedback or complex systems [16]. 

While there is much emphasis on construction in the Maker 
Movement, we argue that equal attention should be paid to the 
intermediate processes of making, such as dealing with 
unexpected problems that inevitably arise along the way. Of 
particular relevance here are the practices of troubleshooting, 
debugging and problem solving at large. As Papert [16] observed 
early on “when you learn to program a computer, you almost 
never get it right the first time (p. 23). Thus, troubleshooting 
always involves taking something apart to some extent—whether 
a program or a seam—and putting it together again once one has 
figured out the issue. In other words, making is just as much 
about construction as it is about deconstruction and therefore, 
reconstruction.  

Some construction kits, which can be called flex-state 
construction kits, are specially designed to allow makers to 
continually explore within this space of deconstruction and 
reconstruction, and consequently troubleshooting and 
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debugging. For instance, children using Legos are encouraged not 
only to build creations, but also break and remake them. Other 
construction kits, which can be labeled fixed-state including 
Adafruit FLORA and MakerBot, focus more on the creation of 
seemingly permanent artifacts, whether light-up hoodies or 
architectural models. Due to this attention on final rather than 
ephemeral products, fixed-state kits limit the opportunities for 
endless reconstruction as seen with flex-state kits. Furthermore, 
the process of debugging within fixed-state construction kits is 
often arduous; fixing a 3-D print, for example, involves going 
back to a program file, figuring out if the error is in the file or the 
printer, addressing, the issue, and then printing the object all 
over again. While the creation of personal artifacts is a hallmark 
of the Maker Movement, we argue that this lack of emphasis on 
deconstruction and reconstruction misses a rich opportunity for 
learning and assessment.  

In this paper, we aim to include deconstruction, 
reconstruction, troubleshooting and debugging within the whole 
cycle of making by proposing what we call a reconstruction kit. 
By adding modular moveable elements, a reconstruction kit can 
transform as fixed-state kit into a flex-state one. Here, we 
describe the design and testing of a first prototype of an 
electronic textiles (e-textiles) reconstruction kit, based on LilyPad 
Arduino [3]. An extension of the Arduino microcontroller, the 
LilyPad allows makers to create fabric-based electronics projects 
using sewable components such as LEDs, buzzers, and switches. 
Through creation of e-textiles projects, students learn to 
integrate multiple domains of knowledge and skill including 
design, circuitry, coding, and crafting [12]. We define the LilyPad 
Arduino as a fixed-state construction kit because it requires 
sewing things together in order to create semi-permanent 
connections. Debugging within this space is often tedious and 
time-consuming since it involves taking out and re-doing stitches 
from a sewn circuit. Our kit bypasses this problem by turning e-
textiles components into modular pieces, thus allowing for 
flexible de/reconstruction. We report here on a workshop in 
which seven teams of high school students used this e-textiles 
reconstruction kit for the purposes of learning through 
debugging. Using the kit, we developed a series of challenges (or 
“DebugIts” 2) each focused on a particular issue in circuitry or 
coding. After students solved these, we then asked them to 
construct their own DebugIt challenges for others to tackle. We 
build on a previous study exploring e-textiles debugging 
activities [8] to ascertain how our reconstruction kit works as a 
viable tool to both teach and assess student knowledge of 
problem solving.  

2 BACKGROUND 
Debugging has long been considered an important skill to 
support within computer science learning (e.g., [4, 17]). 
Researchers have developed a range of tools and methods to 

                                                                    
2 The name DebugIt makes reference to the Debug-It Studio of buggy 
Scratch projects that Brennan released on the Scratch Ed website 
beginning in 2010 so that other Scratch members could solve them [6]. 

support this on-screen skill, for example, development logs, 
reflective memos, tracing tools, and visualizations (e.g., [2, 5, 9]). 
However, as McCauley and colleagues noted, it is unclear how 
the findings and strategies developed from these studies apply to 
different computational contexts, such as ones that encompass 
both on and off-screen elements [15]. In focusing on these 
‘hybrid’ designs, we posit there is potential to promote deeper 
problem-solving skills through the process of debugging.   

Of particular note here is students abilities to develop their 
computational thinking (CT) skills, a problem-solving approach 
that has recently gained traction within educational contexts 
[11]. As defined by Wing, CT moves beyond knowing the 
specifics of code or programming to an entirely different way of 
approaching problems [24]. This can include, for instance, 
thinking about the component parts of a system and how they fit 
together to form a complete solution. These aspects become 
particularly relevant in the context of e-textiles, where one must 
consider the interface between the on-screen world of code, and 
the off-screen world of circuitry and crafting in order to create a 
functioning computational artifact [7, 12]. 

Moreover, the process of debugging also encompasses a 
mode of problem solving that Kapur calls “productive failure” 
[13]. This concept describes the counterintuitive notion that 
students can potentially learn more by moving through a series 
of struggles and failures rather than being carefully scaffolded 
through incremental, correct steps. While Kapur focused on this 
idea within the context of ill-defined problems, others have 
spoken about how productive failure has just as much potential 
within the arena of open-ended design activities [14]. For 
instance, this becomes particularly apparent in maker contexts 
where creators often have to deal with a range of different, often 
finicky materials that require individuals to tinker, troubleshoot, 
and fail before creating a working project [18, 19]. 

These considerations of debugging as a form of 
computational thinking and productive failure thus inspired the 
development of a reconstruction tool for e-textiles learning. We 
build off prior work where we implemented a debugging 
challenge using pre-sewn, pre-programmed e-textile projects that 
contained a curated collection of circuit and code problems [8]. 
For circuitry, this included short circuits, electric topology, and 
polarity. For coding, this included constant versus variable pins, 
control flow, and end-state definition. Students developed 
particular methods of solving these challenges, including 
strategically isolating and prioritizing issues, and running 
through cycles of hypothesis making and testing. While students 
managed to solve many of these problems, the static nature of 
the original tool did not allow students to tinker or experiment 
with their solutions, a key practice of making and debugging. 
Additionally, the process was not particularly creative; while 
flex-state construction kits are often focused on “design for 
designers” [20], or avenues for creative expression, in these 
debugging challenges, students were mostly expected to provide 
the single correct answer rather than developing alternate 
solutions or even challenges of their own.  
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Figure 1: An E-Textile Project with Sewn Circuits  
 

           
 

                  
Figure 2: Reconstruction Kit for E-Textiles. Functional LilyPad 
circuit (top); modular felt strips with metallic thread (bottom 
left) and hooked LEDs (bottom right) to bypass sewing  
 

            
Figure 3: Simple construction mat for battery-powered circuits 
(left); complex construction mat with LilyPad Arduino for 
codeable circuits (right)   
 
Our reconstruction kit is designed to address these elements by 
transforming previously fixed pieces into modular pieces. Here, 
stitched circuits with metallic thread become felt strips and 
hooked LEDs that can easily be attached or detached (Figure 2), 
therefore eliminating the time-consuming need to sew (or 
unsew). Using the kit, students can not only build functional e-
textiles circuits rapidly, but they can also encounter, solve, and 
create a wide range of debugging issues—something we piloted 
through our workshop. In this study, we therefore address the 
following research questions: 1) How did students solve and 
create the DebugIt challenges using the reconstruction kit? 2) 
What were student perceptions regarding the debugging 

activities and reconstruction kit in terms of how these helped or 
hindered their learning? 

3 THE DEBUGIT RECONSTRUCTION KIT  
Our reconstruction kit is based off the LilyPad Arduino 
construction kit: a series of sewable electronics including an 
Arduino-based microcontroller, sensors (e.g., light, temperature) 
and actuators (e.g., LEDs, buzzers). In its regular usage, one sews 
components together in circuits using conductive thread into 
fabric (Figure 1). To bypass the complexity of sewing, our kit 
uses hooked LEDs and buzzers along with felt strips and 
conductive thread to allow for quick connections and 
disconnections (Figure 2). The kit also includes two construction 
mats on which pieces can be connected: a simple construction 
mat with two coin cell battery holders, and a complex 
construction mat with a LilyPad Arduino microcontroller (see 
Figure 3). With the simple mat, users can create simple circuits 
with LEDs and buzzers powered by 3V coin cell batteries. With 
the complex mat, users can additionally create codeable circuits 
controlled by Arduino programs. Building off our previous work 
[8], the kit can also support the creation of debugging challenges, 
which we call “DebugIts,” where students can work on fixing 
mistakes within e-textiles circuit or code (Figure 4).  

In creating our kit, we followed principles that Resnick and 
Silverman have outlined for successfully designing construction 
kits [20]. This includes thinking carefully about what 
technologies/skills we chose to “black box” (i.e., sewing), 
providing “low floors” for easy access (hooked rather than sewn 
connections), along with “wide walls” for variety and exploration 
(construction mats as the basis for multiple projects), and finally, 
an emphasis on “design for designers” (re-usability of the pieces 
allowing for endless redesigns and reconstructions). 
 
4 METHODS 

4.1 Participants and Workshop Design  
We conducted an after-school workshop at a science museum in 
a northeastern U.S. city with ten high school freshmen from a 
science magnet public school. Based on surveys, five students 
had prior experience with circuitry (mostly through school), and 
six had prior experience with coding (mostly through the “Hour 
of Code” program by Code.org). One student had minimal prior 
experience with e-textiles (sewing a bracelet), but the rest were 
working with e-textiles for the first time.  

The workshop met four times (once a week for 110 minutes) 
and was led by three authors of this paper. In small groups of one 
to three, students engaged with both the simple and complex 
construction mats. Groups were led through a sequence of four 
activities per mat: (1) creating a simple or codeable e-textiles 
circuit from scratch, (2) solving an instructor-designed Debug-It 
challenge, (3) designing their own DebugIt challenge, and (4) 
solving a learner-designed DebugIt challenge. For this paper, we 
focus on the last week of the workshop, where students solved 
and created DebugIts using the complex mat. In prior weeks, 
students had learned how to create working e-textiles circuits 
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and write and modify code. During the last session, students 
started off working in seven groups; however, in between 
challenge A2 and B1, two groups merged due to laptop issues.  

After solving these challenges, students were asked to create 
their own DebugIt challenges. In order to help guide students, 
they were first asked to create a working circuit and code 
combination, and then asked to add a ‘bug’ to either the code or 
the circuit. They were also asked to designate a final state (e.g., 
all three lights should turn on). Groups then traded DebugIts 
with others.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: An Instructor-Designed DebugIt including a ‘buggy’ 
circuit that contains incorrect connections based on the 
accompanying code. A potential solutions is included here.  

4.2 DebugIt Design 
For the instructor-designed DebugIt challenges, students were 
provided either a circuit or code that had mistakes (or ‘bugs’) and 
asked to fix these with the least number of ‘moves’ (defined as 
unhooking and hooking a piece, or changing a line of code). 
Students solved the challenge once they reached a predesignated 
final state (e.g., all four lights blink together) (see Figure 4 for a 

sample DebugIt). While the simple mat DebugIts only involved 
circuit-based bugs, the complex mat DebugIts involved fixing 
either the code or the circuit. Each challenge given to the 
students focused on a particular skill and/or area of 
understanding of e-textiles (see Table 1). Challenges increased in 
difficulty each day from the simplest to the most complex: for 
instance, while A1 deals with parallel circuits that are 
programmed together, B1 deals with independent circuits that 
can be programmed separately, something that requires greater 
knowledge of both circuitry and code.  
 
Table 1: Instructor-Designed Complex Mat DebugIts and Issues 

Name Description  Type of Issue Addressed 

A1 Buggy 
Circuit, 
Working 
Code 

Polarization with parallel circuit: changing the 
connection points of an LED so that its polarity 
matched the rest of the parallel circuit;  
Electronic topology with parallel circuits: 
changing a connection from a constant (+) to a 
variable pin, so that a parallel led circuit could 
be programmed together. 

A2 Working 
Circuit, 
Buggy Code  

Variable declaration/interfacing: changing a 
variable so that it matched with the given 
circuit; 
End state definition within a function: changing 
a function so that the circuit would result in the 
desired final state (e.g., all LEDs on).  

B1 Buggy 
Circuit, 
Working 
Code 

Polarization with independent circuit: changing 
the connection points of an LED so that its 
polarity matched another independent circuit 
(grounded together); 
Electronic topology with independent circuits: 
changing a connection so that LEDs in 
independent circuits could be programmed 
separately.  

B2 Working 
Circuit, 
Buggy Code  

Setting up program constants: setting a pin as an 
electrical output;  
End state definition within the sequence” 
changing a sequence of code so that the circuit 
would result in the desired final state (e.g., 4 
LEDs blinking together).  

4.3 Data and Analysis 
We draw from two sources of data to answer our research 
questions: student worksheets and a survey. For the last day of 
the workshop, there were six different worksheets per group: one 
for each of the instructor-designed DebugIts (4), one focused on 
designing a DebugIt challenge, and one focused on solving other 
students’ designed DebugIt (see Figures 5 and 6). For all the 
DebugIts solved (whether instructor or learned-designed), the 
worksheets asked students to report on their corrections to either 
the circuit or the code, and a self-reported number of moves. We 
recorded how many groups attempted and solved each instructor 
DebugIt and looked at the range and average of their self-
reported number of moves. We also examined how their 
solutions deviated from our expected solution, both 
quantitatively (looking at the number of moves made) and 
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qualitatively (type of moves). In the worksheet, we also asked 
students to write what they thought was the most difficult aspect 
of each DebugIt. Based on their answers, we looked for emerging 
themes to help understand the affordances and challenges of the 
kit.  

For the DebugIts that groups designed themselves, the  
worksheets asked for their buggy code or buggy circuit along 
with the corrected version. We counted how many groups 
created buggy circuits versus buggy code, and examined the bugs 
themselves, looking at what kinds of issues groups decided to 
highlight (e.g., end state definition within the function, 
polarization), in order to compare them with the instructor-
created DebugIt challenges. We counted how many of these were 
solved, and recorded the number of self-reported moves. We also 
looked through their answers regarding the “most difficult” part 
about the challenge in order to highlight emerging themes.  
 

    
Figure 5: Student worksheet showing a solution for Challenge 
B1, with drawing of the corrected circuit, number of moves 
made, and discussion of the most difficult part of the challenge. 
               

        
Figure 6: Students working together to fix a circuit on the 
complex reconstruction mat. 
 
To capture student perceptions of the activities, we administered   
an exit survey that asked which activity was most and least 
helpful to their learning and why. This included: creating a 
codeable circuit, solving a buggy code, solving a buggy circuit, or 
creating a DebugIt. All ten students answered these questions. 
We tallied up responses received for each activity, and identified 
emerging themes across their explanations. We also asked them 
what they felt they learned about coding and circuitry within the 
workshop. Only eight of ten students answered these questions 
due to time constraints.    

5 FINDINGS  

5.1. Fixing Instructor-Designed DebugIts  
Student groups were allotted up to 60 minutes to work on the 
instructor DebugIts (A1, A2, B1 and B2). Within this given 
timeframe, all groups were able to solve A1, A2 and B1, while 
only one group attempted, but did not solve B2 (see Table 2).  

Looking at the number of moves, we expected students to 
use two to three moves per challenge. However, groups’ self-
reported number of moves ranged from one to ten, with the most 
number of moves reported for Challenge B1 (see Table 2). This 
finding makes sense given that B1 was the most complex 
challenge the groups encountered, and was the site where they 
tinkered and experimented the most with the moves they took 
(as opposed to earlier challenges, where they felt more 
confident).   
 
Table 2: Groups who attempted/solved DebugIts 

DebugIt Groups 
Attempted  

Groups 
Solved  

Alternate 
Solutions  Moves Made 

A1 –  
Buggy circuit 

7 7 2 
Range: 1-4 
Average: 2.57 
Expected: 3 

A2 –  
Buggy code 

7 7 1 
Range: 1-4 
Average: 2 
Expected: 2 

B1 –  
Buggy circuit 

6 6 2 
Range: 1-10 
Average: 4.33 
Expected: 3 

B2 –  
Buggy code 

1 0 N/A N/A 

 
Looking at their solutions themselves, we also calculated the 

number of “alternate” solutions provided per DebugIt, meaning 
ones that deviated from what we had originally intended. For 
Challenge A1, the intended final solution included two parallel 
circuits; however, two groups provided only one parallel circuit, 
which still fulfilled the intended final state (all LEDs blinking 
together). For Challenge A2, only one group provided an 
alternate solution; while they added seemingly redundant lines of 
code, it still led to the correct final state. For Challenge B1, two 
alternate solutions were provided. One involved creating an 
‘always-on’ rather than codeable connection, and the other 
involved an entirely different circuit diagram. Again, the 
existence of these alternate solutions seem to highlight students’ 
freedom to experiment and tinker while solving these DebugIts, 
often providing creative solutions beyond what was expected.  

Looking at reports of their difficulties with DebugIts, 
students mentioned a few issues, including not understanding 
polarity within circuits, and being “worried about making too 
many moves.” Several groups mentioned dealing with the 
physical challenges of the kit itself, specifically the thickness of 
the felt conductive strips, and the tenuous nature of the hooked 
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connections between components. However, the most common 
difficulty described by groups was understanding the 
relationship between the given code and the circuit. For example, 
one group wrote the most difficult part of the buggy code 
challenge was, “understanding what everything meant,” or 
specifically reading parts of the code to “see what had power” or 
“what’s active” on the LilyPad. For another group, this became 
clear through their process of solving the buggy circuit of A1. At 
first, the group created an incorrect circuit that did not solve the 
challenge. However, after reading and interpreting the code they 
were able to provide a revised and correct solution to the 
challenge. As the group noted: “[We] didn’t see this at first” with 
an arrow pointing to a line of the program, thus illustrating their 
realization that the code is intricately connected to the function 
of an e-textiles circuit. Working with the DebugIts thus forced 
students to deal with the interface between on and off-screen 
elements, a key component of computational thinking. 
 
Table 3: Description of Learned-Designed DebugIts  

Group Challenge 
Created  

Type of Issue  Solved? Moves 
Made 

1 
Buggy 
circuit 

Electronic topology 
with parallel circuit 

Yes 2 

2 Buggy code 

End-state definition 
within the sequence 
(or incomplete 
code) 

No N/A 

3 Buggy code 

End-state definition 
within the function; 
variable 
declaration/ 
interfacing; setting 
up program 
constants 

Yes 6 

4 Buggy code 
End state definition 
within the function 

Yes 3 

 
5.2 Creating/ Fixing Learner-Designed DebugIts  
For the learner-designed DebugIts, only four of six groups were 
able to complete the task of creating and trading challenges 
within the allotted 30 minutes. Of the groups that finished, one 
group chose to create a buggy circuit-working code combination, 
while three decided upon a working circuit-buggy code 
combination (see Table 3). Looking at the bugs themselves, two 
of the four groups (1 and 4) presented issues that replicated the 
instructor-designed DebugIts solved earlier (e.g., electronic 
topology with parallel circuit, end state definition within the 
function). Group 2, however, created an unconventional 
challenge that involved adding lines to already working code for 
a new end state (to make the LEDs blink, rather than staying on). 
While this is not necessarily a traditional ‘bug’ or mistake, 
‘solving’ this DebugIt did require a more complex understanding 
of programming, something not completed by the receiving 
group. Group 3, by far, had the most unique challenge (see Figure 

7) since their code and circuitry did not follow the standards 
presented in earlier challenges: code variables were redefined 
within the loop despite being defined earlier, the circuit 
contained a crossed wire (which actually worked because of the 
insulation provided by the felt strip), and contained a seemingly 
redundant ground pin. Despite these deviations from convention, 
their DebugIt still worked and was solved by the receiving group. 

For the learner-designed DebugIts, students again reported 
having the most difficulty interpreting the connection between 
the given code and circuit. One group wrote about challenges 
related to “trying to understand the code with the circuit,” while 
another group was more specific, writing that the difficulties lay 
in “figuring out how the code effected [sic] the circuit.” Thus, as 
with the instructor-designed DebugIts, students were forced to 
engage at the interface between the physical and digital elements 
of e-textiles through the design of their debugging challenges.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Group 3’s DebugIt with unconventional code and 
circuitry. The code (left) features redefined variables within 
the loop after already being defined earlier, while the circuit 
has a redundant ground pin and crossed (yet working) wires. 

5.3 Students Perceptions of DebugIt Activities 
As a result of participating in the workshop, five of eight 
students felt that they learned about circuitry. Kevin3 stated: “I 
can relate it to engineering,” while Maria wrote about polarity: “I 
learned how to make sure (-)’s and (+)’s matter.” Seven of eight 
students believed that the DebugIt activities and kit helped them 
learn coding. Anh stated that she learned “how it works and how 
to create it,” while Maria pointed out how she gained 
understanding in “how little words matter a lot” when coding.  

When asked about their experience with the complex 
reconstruction mats, most students (six of 10) chose fixing buggy 
code as the most helpful to their learning; Noah stated: “It was 
the hardest thing I did.” In terms of creating DebugIts, student 
opinions were divided. Four of 10 students choose it as the least 
helpful to their learning, explaining: “I learned a little, but not the 
most out of this,” “too easy,” and “I really didn’t know how to do 

                                                                    
3 This name and all following are pseudonyms.  
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it.” On the other hand, four choose creating DebugIts as the most 
helpful to their learning. About solving and creating challenges, 
Servino stated: “Both of these were very interactive and helped 
us develop new techniques.” Maria added that “It was cool being 
able to create my own challenge.” Thus, even though students 
learned the most from the practice of debugging itself (i.e., fixing 
code), the creation of DebugIts potentially highlights an area 
where students felt the greatest opportunity to express 
themselves creatively within the context of debugging.  

6 DISCUSSION  
Our results illustrate the feasibility of our reconstruction kit in 
creating opportunities for rapid construction, deconstruction, and 
reconstruction with e-textiles. In designing activities for fixing 
and designing DebugIts, we allowed students to engage with 
troubleshooting both on and off-screen. In the discussion, we 
highlight both the affordances and limitations of our design, as 
well as suggestions gleaned from our prototype and testing for 
creating reconstruction kits for making at large.  

6.1 Personalized Pathways of Productive Failure  
One major affordance of the reconstruction kit is that its 
modularity creates opportunities for students to enter into 
personalized pathways of productive failure [13]. In other words, 
each reconstruction kit can yield multiple debugging challenges, 
all which can be customized to students’ own abilities and 
desires. This differs from our earlier effort where we created the 
pre-sewn debugging challenge that had a set level of difficulty, 
and which could only be fixed once [8].  

This customization afforded by the kit was evidenced by the 
different pathways that groups took through the activities. For 
instance, some groups took longer to grapple with basic concepts 
of circuitry and code and needed more time with the instructor 
DebugIts. When it became clear that groups were unable to finish 
on their own, we sometimes asked them to work on an even 
simpler task (e.g., get one LED to turn on) before moving back to 
their original challenge. Other groups, however, were able to 
finish challenges relatively independently. They tinkered and 
experimented with multiple solutions along the way, something 
evidenced by the high number of moves and alternate solutions 
they reported. In this way, the DebugIts provided a continuously 
personalizable ill-structured problem space for students to 
engage; that is, based on their own knowledge and assumptions, 
they could keep on ‘failing’ at debugging—tinkering and testing 
out their ideas—until they arrived at the desired solution.   

6.2 Engaging Interfaces between On and Off 
Screen  
Another main affordance of the reconstruction kit is how it 
enables students to work at the interface between the on and off-
screen elements of e-textiles: the digital world of code and the 
physical world of the circuits. Debugging within hybrid 
computational spaces such as e-textiles and robotics is often 
difficult and complex since it involves not only knowing different 
domains (hardware design, computer programming) but also 

understanding the interrelationship or interface between these 
areas [12, 23]. This activity can become particularly 
overwhelming in practice; for instance, a non-functioning e-
textiles or robotics project is more likely due to overlapping, 
multi-domain issues rather than one isolated problem or topic.  

Our kit addresses this issue by creating opportunities to 
explicitly engage with this interface between digital and physical 
elements. Specifically, this was accomplished through the careful 
design of the DebugIts, which all purposefully addressed the 
interrelationship between code and circuitry in e-textiles. This 
was accomplished by setting up a system of only providing a 
buggy circuit or buggy code, along with a functioning 
complement (working code or working circuit) as a jumping off 
point for students. Thus, rather than encountering a complex, 
multi-domain problem all at once, groups were scaffolded into 
the practice, knowing that they had to refer to either the working 
circuit or code in order to understand what was broken in the 
other part. This structure therefore reinforced their 
understanding of the interrelationship between these elements, 
something that was highlighted by the numerous comments that 
students provided about this connection. In creating these pre-
compartmentalized issues then, we scaffolded students into the 
practice of isolating parts of the system in order to understand 
the whole, something that we earlier highlighted as key 
component of computational thinking [24].  

6.3 Designing Reconstruction Kits for Making   
Many lessons about the design of reconstruction kits in general 
can be gleaned by looking at experiences of students who 
engaged with our prototype. One prominent issue that came up 
was the finicky nature of the pieces themselves. While we 
created connections that were easy to take apart (hooks and 
strips), this sometimes thwarted students in their efforts to 
creating working circuits; because they were so loose, they 
would accidentally just fall apart. This points to the need to 
strike a balance between easy deconstruction and secure 
connections in the design of these kits. Another issue we 
encountered was how the physical configuration of the pieces 
themselves sometimes constrained students’ designs and 
understanding. As described earlier, the felt strips we used 
actually insulated the metallic thread such that crossed wires 
were not an issue. As a result, students did not come to 
understand the importance of how this can lead to short 
circuits—a common problem within regular e-textiles 
construction. Furthermore, the strips themselves tended to lead 
more easily to the creation of parallel circuits than independent 
circuits, something that might have caused students to 
understand the former better the latter. From this perspective, 
designers of any reconstruction kit should consider how the 
particular configuration of pieces might shape student 
understanding in unexpected ways.       
       Beyond these material concerns however, one of the most 
prominent lessons that can be learned from the development and 
the implementation of our prototype is how the kit can create 
opportunities for creative expression within the context of 
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debugging. Research has already pointed to the affordances of e-
textiles production in creating spaces for aesthetic and narrative 
expression, often supporting personal identity, social connection 
and cultural relevance  [3, 21, 22]. In this study, students lacked 
this opportunity since they were not asked to produce artifacts of 
their own. This is certainly a limitation of this study, and 
something we aim to address in future research. However, we 
argue that there was still room for creativity within context of 
the activities that we provided, namely within the process of 
problem solving. This can be seen within the alternate solutions 
students provided for the instructor DebugIts, as well as their 
own DebugIt designs, where they often presented unique and 
unusual solutions.  
       This is not to say that our workshop allowed for complete 
creative freedom though. For the purposes of making things 
accessible to students, we carefully outlined the steps that 
students needed to take in designing DebugIt challenges. In some 
respects, these constraints seemingly limited their creativity: one 
student, for instance, specifically asked whether he could add 
bugs to both the circuit and the code, something we did not allow 
since it did not conform to our structure (we only asked students 
to add bugs to either the circuit or the code). Future work looking 
at students’ design of DebugIts might consider expanding upon 
this aspect of creative expression, perhaps drawing from research 
on youth designing games. Just as games ask others to solve a 
puzzle, DebugIts also have an audience that is supposed to 
provide a solution. The early designs of the Scratch DebugIt 
studio have already illustrated the potential of engaging learners 
not only in making projects but also in fixing them. Our findings 
further add to this area by considering students’ design of 
debugging challenges within making as something that can 
become part of their learning, something that the development of 
reconstruction kits may afford.  
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