
Learning by Fixing and Designing Problems:
A Reconstruction Kit for Debugging E-Textiles

Full Paper

Debora Lui
University of Pennsylvania

3700 Walnut St.
Philadelphia PA, USA
deblui@upenn.edu

Emma Anderson
University of Pennsylvania

3700 Walnut St.
Philadelphia PA, USA
emmaa@upenn.edu

Yasmin B. Kafai
University of Pennsylvania

3700 Walnut St.
Philadelphia PA, USA
kafai@upenn.edu

 Gayithri Jayathirtha
University of Pennsylvania

3700 Walnut St.
Philadelphia PA, USA

gayithri@gse.upenn.edu

ABSTRACT
In this paper, we present the development of a “reconstruction
kit” for e-textiles, which transforms fixed-state construction
kits—maker tools and technologies that focus on the creation of
semi-permanent projects—into flex-state construction kits that
allow for endless deconstruction and reconstruction. The kit uses
modular pieces that allow students to both solve and create
troubleshooting and debugging challenges, which we call
“DebugIts.” We tested our prototype in an after-school workshop
with ten high school students, and report on how they interacted
with the kit, as well as what they learned through the DebugIt
activities. In the discussion, we delve into the affordances and
challenges of using these kits as both learning and assessment
tools. We also discuss how our pilot and prototype can inform
the design of reconstruction kits in other areas of making.1

CCS CONCEPTS
• Social and professional topics → Computer Science
education; Computational thinking; K-12 Education

KEYWORDS
Debugging, Computational Thinking, Making, Productive Failure

ACM Reference format:
Debora Lui, Emma Anderson, Yasmin B. Kafai, Gayithri
Jayathirtha. 2017. Learning by Fixing and Designing Problems: A

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.

FabLearn '17, October 21–22, 2017, Stanford, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-6349-5/17/10…$15.00
https://doi.org/10.1145/3141798.3141805

Reconstruction Kit for Debugging E-Textiles. In Proceedings of
FabLearn17, October 21-22, 2017. 8 pages.
https://doi.org/10.1145/3141798.3141805

 1 INTRODUCTION
Making has become popular within educational sites because of
its ability to promote science, technology, engineering, and math
(STEM) learning and computational thinking (CT) skills [1, 10].
Many efforts to support maker activities have focused on the
design of “construction kits,” which Resnick and Silverman [20]
describe as “systems that engage kids in designing and creating
things” (p. 1). These kits can be situated on-screen (e.g., Scratch,
StarLogo), off-screen (e.g., Lego Bricks, littleBits), or in combined
‘hybrid’ spaces with software and hardware elements (e.g., Lego
Mindstorms, Arduino). Designing high quality construction kits
requires creating easy-to-use interfaces and materials that allow
even novice makers to design and create a wide range of projects
to learn about powerful ideas in STEM disciplines such as
feedback or complex systems [16].

While there is much emphasis on construction in the Maker
Movement, we argue that equal attention should be paid to the
intermediate processes of making, such as dealing with
unexpected problems that inevitably arise along the way. Of
particular relevance here are the practices of troubleshooting,
debugging and problem solving at large. As Papert [16] observed
early on “when you learn to program a computer, you almost
never get it right the first time (p. 23). Thus, troubleshooting
always involves taking something apart to some extent—whether
a program or a seam—and putting it together again once one has
figured out the issue. In other words, making is just as much
about construction as it is about deconstruction and therefore,
reconstruction.

Some construction kits, which can be called flex-state
construction kits, are specially designed to allow makers to
continually explore within this space of deconstruction and
reconstruction, and consequently troubleshooting and

FABLEARN’17, Oct 2017, Palo Alto, CA USA Lui, Anderson, Kafai and Jayathirtha

2

debugging. For instance, children using Legos are encouraged not
only to build creations, but also break and remake them. Other
construction kits, which can be labeled fixed-state including
Adafruit FLORA and MakerBot, focus more on the creation of
seemingly permanent artifacts, whether light-up hoodies or
architectural models. Due to this attention on final rather than
ephemeral products, fixed-state kits limit the opportunities for
endless reconstruction as seen with flex-state kits. Furthermore,
the process of debugging within fixed-state construction kits is
often arduous; fixing a 3-D print, for example, involves going
back to a program file, figuring out if the error is in the file or the
printer, addressing, the issue, and then printing the object all
over again. While the creation of personal artifacts is a hallmark
of the Maker Movement, we argue that this lack of emphasis on
deconstruction and reconstruction misses a rich opportunity for
learning and assessment.

In this paper, we aim to include deconstruction,
reconstruction, troubleshooting and debugging within the whole
cycle of making by proposing what we call a reconstruction kit.
By adding modular moveable elements, a reconstruction kit can
transform as fixed-state kit into a flex-state one. Here, we
describe the design and testing of a first prototype of an
electronic textiles (e-textiles) reconstruction kit, based on LilyPad
Arduino [3]. An extension of the Arduino microcontroller, the
LilyPad allows makers to create fabric-based electronics projects
using sewable components such as LEDs, buzzers, and switches.
Through creation of e-textiles projects, students learn to
integrate multiple domains of knowledge and skill including
design, circuitry, coding, and crafting [12]. We define the LilyPad
Arduino as a fixed-state construction kit because it requires
sewing things together in order to create semi-permanent
connections. Debugging within this space is often tedious and
time-consuming since it involves taking out and re-doing stitches
from a sewn circuit. Our kit bypasses this problem by turning e-
textiles components into modular pieces, thus allowing for
flexible de/reconstruction. We report here on a workshop in
which seven teams of high school students used this e-textiles
reconstruction kit for the purposes of learning through
debugging. Using the kit, we developed a series of challenges (or
“DebugIts” 2) each focused on a particular issue in circuitry or
coding. After students solved these, we then asked them to
construct their own DebugIt challenges for others to tackle. We
build on a previous study exploring e-textiles debugging
activities [8] to ascertain how our reconstruction kit works as a
viable tool to both teach and assess student knowledge of
problem solving.

2 BACKGROUND
Debugging has long been considered an important skill to
support within computer science learning (e.g., [4, 17]).
Researchers have developed a range of tools and methods to

2 The name DebugIt makes reference to the Debug-It Studio of buggy
Scratch projects that Brennan released on the Scratch Ed website
beginning in 2010 so that other Scratch members could solve them [6].

support this on-screen skill, for example, development logs,
reflective memos, tracing tools, and visualizations (e.g., [2, 5, 9]).
However, as McCauley and colleagues noted, it is unclear how
the findings and strategies developed from these studies apply to
different computational contexts, such as ones that encompass
both on and off-screen elements [15]. In focusing on these
‘hybrid’ designs, we posit there is potential to promote deeper
problem-solving skills through the process of debugging.

Of particular note here is students abilities to develop their
computational thinking (CT) skills, a problem-solving approach
that has recently gained traction within educational contexts
[11]. As defined by Wing, CT moves beyond knowing the
specifics of code or programming to an entirely different way of
approaching problems [24]. This can include, for instance,
thinking about the component parts of a system and how they fit
together to form a complete solution. These aspects become
particularly relevant in the context of e-textiles, where one must
consider the interface between the on-screen world of code, and
the off-screen world of circuitry and crafting in order to create a
functioning computational artifact [7, 12].

Moreover, the process of debugging also encompasses a
mode of problem solving that Kapur calls “productive failure”
[13]. This concept describes the counterintuitive notion that
students can potentially learn more by moving through a series
of struggles and failures rather than being carefully scaffolded
through incremental, correct steps. While Kapur focused on this
idea within the context of ill-defined problems, others have
spoken about how productive failure has just as much potential
within the arena of open-ended design activities [14]. For
instance, this becomes particularly apparent in maker contexts
where creators often have to deal with a range of different, often
finicky materials that require individuals to tinker, troubleshoot,
and fail before creating a working project [18, 19].

These considerations of debugging as a form of
computational thinking and productive failure thus inspired the
development of a reconstruction tool for e-textiles learning. We
build off prior work where we implemented a debugging
challenge using pre-sewn, pre-programmed e-textile projects that
contained a curated collection of circuit and code problems [8].
For circuitry, this included short circuits, electric topology, and
polarity. For coding, this included constant versus variable pins,
control flow, and end-state definition. Students developed
particular methods of solving these challenges, including
strategically isolating and prioritizing issues, and running
through cycles of hypothesis making and testing. While students
managed to solve many of these problems, the static nature of
the original tool did not allow students to tinker or experiment
with their solutions, a key practice of making and debugging.
Additionally, the process was not particularly creative; while
flex-state construction kits are often focused on “design for
designers” [20], or avenues for creative expression, in these
debugging challenges, students were mostly expected to provide
the single correct answer rather than developing alternate
solutions or even challenges of their own.

Learning by Fixing and Designing Problems FABLEARN’17, Oct 2017, Palo Alto, CA USA

 3

Figure 1: An E-Textile Project with Sewn Circuits

Figure 2: Reconstruction Kit for E-Textiles. Functional LilyPad
circuit (top); modular felt strips with metallic thread (bottom
left) and hooked LEDs (bottom right) to bypass sewing

Figure 3: Simple construction mat for battery-powered circuits
(left); complex construction mat with LilyPad Arduino for
codeable circuits (right)

Our reconstruction kit is designed to address these elements by
transforming previously fixed pieces into modular pieces. Here,
stitched circuits with metallic thread become felt strips and
hooked LEDs that can easily be attached or detached (Figure 2),
therefore eliminating the time-consuming need to sew (or
unsew). Using the kit, students can not only build functional e-
textiles circuits rapidly, but they can also encounter, solve, and
create a wide range of debugging issues—something we piloted
through our workshop. In this study, we therefore address the
following research questions: 1) How did students solve and
create the DebugIt challenges using the reconstruction kit? 2)
What were student perceptions regarding the debugging

activities and reconstruction kit in terms of how these helped or
hindered their learning?

3 THE DEBUGIT RECONSTRUCTION KIT
Our reconstruction kit is based off the LilyPad Arduino
construction kit: a series of sewable electronics including an
Arduino-based microcontroller, sensors (e.g., light, temperature)
and actuators (e.g., LEDs, buzzers). In its regular usage, one sews
components together in circuits using conductive thread into
fabric (Figure 1). To bypass the complexity of sewing, our kit
uses hooked LEDs and buzzers along with felt strips and
conductive thread to allow for quick connections and
disconnections (Figure 2). The kit also includes two construction
mats on which pieces can be connected: a simple construction
mat with two coin cell battery holders, and a complex
construction mat with a LilyPad Arduino microcontroller (see
Figure 3). With the simple mat, users can create simple circuits
with LEDs and buzzers powered by 3V coin cell batteries. With
the complex mat, users can additionally create codeable circuits
controlled by Arduino programs. Building off our previous work
[8], the kit can also support the creation of debugging challenges,
which we call “DebugIts,” where students can work on fixing
mistakes within e-textiles circuit or code (Figure 4).

In creating our kit, we followed principles that Resnick and
Silverman have outlined for successfully designing construction
kits [20]. This includes thinking carefully about what
technologies/skills we chose to “black box” (i.e., sewing),
providing “low floors” for easy access (hooked rather than sewn
connections), along with “wide walls” for variety and exploration
(construction mats as the basis for multiple projects), and finally,
an emphasis on “design for designers” (re-usability of the pieces
allowing for endless redesigns and reconstructions).

4 METHODS

4.1 Participants and Workshop Design
We conducted an after-school workshop at a science museum in
a northeastern U.S. city with ten high school freshmen from a
science magnet public school. Based on surveys, five students
had prior experience with circuitry (mostly through school), and
six had prior experience with coding (mostly through the “Hour
of Code” program by Code.org). One student had minimal prior
experience with e-textiles (sewing a bracelet), but the rest were
working with e-textiles for the first time.

The workshop met four times (once a week for 110 minutes)
and was led by three authors of this paper. In small groups of one
to three, students engaged with both the simple and complex
construction mats. Groups were led through a sequence of four
activities per mat: (1) creating a simple or codeable e-textiles
circuit from scratch, (2) solving an instructor-designed Debug-It
challenge, (3) designing their own DebugIt challenge, and (4)
solving a learner-designed DebugIt challenge. For this paper, we
focus on the last week of the workshop, where students solved
and created DebugIts using the complex mat. In prior weeks,
students had learned how to create working e-textiles circuits

FABLEARN’17, Oct 2017, Palo Alto, CA USA Lui, Anderson, Kafai and Jayathirtha

4

and write and modify code. During the last session, students
started off working in seven groups; however, in between
challenge A2 and B1, two groups merged due to laptop issues.

After solving these challenges, students were asked to create
their own DebugIt challenges. In order to help guide students,
they were first asked to create a working circuit and code
combination, and then asked to add a ‘bug’ to either the code or
the circuit. They were also asked to designate a final state (e.g.,
all three lights should turn on). Groups then traded DebugIts
with others.

Figure 4: An Instructor-Designed DebugIt including a ‘buggy’
circuit that contains incorrect connections based on the
accompanying code. A potential solutions is included here.

4.2 DebugIt Design
For the instructor-designed DebugIt challenges, students were
provided either a circuit or code that had mistakes (or ‘bugs’) and
asked to fix these with the least number of ‘moves’ (defined as
unhooking and hooking a piece, or changing a line of code).
Students solved the challenge once they reached a predesignated
final state (e.g., all four lights blink together) (see Figure 4 for a

sample DebugIt). While the simple mat DebugIts only involved
circuit-based bugs, the complex mat DebugIts involved fixing
either the code or the circuit. Each challenge given to the
students focused on a particular skill and/or area of
understanding of e-textiles (see Table 1). Challenges increased in
difficulty each day from the simplest to the most complex: for
instance, while A1 deals with parallel circuits that are
programmed together, B1 deals with independent circuits that
can be programmed separately, something that requires greater
knowledge of both circuitry and code.

Table 1: Instructor-Designed Complex Mat DebugIts and Issues

Name Description Type of Issue Addressed

A1 Buggy
Circuit,
Working
Code

Polarization with parallel circuit: changing the
connection points of an LED so that its polarity
matched the rest of the parallel circuit;
Electronic topology with parallel circuits:
changing a connection from a constant (+) to a
variable pin, so that a parallel led circuit could
be programmed together.

A2 Working
Circuit,
Buggy Code

Variable declaration/interfacing: changing a
variable so that it matched with the given
circuit;
End state definition within a function: changing
a function so that the circuit would result in the
desired final state (e.g., all LEDs on).

B1 Buggy
Circuit,
Working
Code

Polarization with independent circuit: changing
the connection points of an LED so that its
polarity matched another independent circuit
(grounded together);
Electronic topology with independent circuits:
changing a connection so that LEDs in
independent circuits could be programmed
separately.

B2 Working
Circuit,
Buggy Code

Setting up program constants: setting a pin as an
electrical output;
End state definition within the sequence”
changing a sequence of code so that the circuit
would result in the desired final state (e.g., 4
LEDs blinking together).

4.3 Data and Analysis
We draw from two sources of data to answer our research
questions: student worksheets and a survey. For the last day of
the workshop, there were six different worksheets per group: one
for each of the instructor-designed DebugIts (4), one focused on
designing a DebugIt challenge, and one focused on solving other
students’ designed DebugIt (see Figures 5 and 6). For all the
DebugIts solved (whether instructor or learned-designed), the
worksheets asked students to report on their corrections to either
the circuit or the code, and a self-reported number of moves. We
recorded how many groups attempted and solved each instructor
DebugIt and looked at the range and average of their self-
reported number of moves. We also examined how their
solutions deviated from our expected solution, both
quantitatively (looking at the number of moves made) and

Learning by Fixing and Designing Problems FABLEARN’17, Oct 2017, Palo Alto, CA USA

 5

qualitatively (type of moves). In the worksheet, we also asked
students to write what they thought was the most difficult aspect
of each DebugIt. Based on their answers, we looked for emerging
themes to help understand the affordances and challenges of the
kit.

For the DebugIts that groups designed themselves, the
worksheets asked for their buggy code or buggy circuit along
with the corrected version. We counted how many groups
created buggy circuits versus buggy code, and examined the bugs
themselves, looking at what kinds of issues groups decided to
highlight (e.g., end state definition within the function,
polarization), in order to compare them with the instructor-
created DebugIt challenges. We counted how many of these were
solved, and recorded the number of self-reported moves. We also
looked through their answers regarding the “most difficult” part
about the challenge in order to highlight emerging themes.

Figure 5: Student worksheet showing a solution for Challenge
B1, with drawing of the corrected circuit, number of moves
made, and discussion of the most difficult part of the challenge.

Figure 6: Students working together to fix a circuit on the
complex reconstruction mat.

To capture student perceptions of the activities, we administered
an exit survey that asked which activity was most and least
helpful to their learning and why. This included: creating a
codeable circuit, solving a buggy code, solving a buggy circuit, or
creating a DebugIt. All ten students answered these questions.
We tallied up responses received for each activity, and identified
emerging themes across their explanations. We also asked them
what they felt they learned about coding and circuitry within the
workshop. Only eight of ten students answered these questions
due to time constraints.

5 FINDINGS

5.1. Fixing Instructor-Designed DebugIts
Student groups were allotted up to 60 minutes to work on the
instructor DebugIts (A1, A2, B1 and B2). Within this given
timeframe, all groups were able to solve A1, A2 and B1, while
only one group attempted, but did not solve B2 (see Table 2).

Looking at the number of moves, we expected students to
use two to three moves per challenge. However, groups’ self-
reported number of moves ranged from one to ten, with the most
number of moves reported for Challenge B1 (see Table 2). This
finding makes sense given that B1 was the most complex
challenge the groups encountered, and was the site where they
tinkered and experimented the most with the moves they took
(as opposed to earlier challenges, where they felt more
confident).

Table 2: Groups who attempted/solved DebugIts

DebugIt Groups
Attempted

Groups
Solved

Alternate
Solutions Moves Made

A1 –
Buggy circuit

7 7 2
Range: 1-4
Average: 2.57
Expected: 3

A2 –
Buggy code

7 7 1
Range: 1-4
Average: 2
Expected: 2

B1 –
Buggy circuit

6 6 2
Range: 1-10
Average: 4.33
Expected: 3

B2 –
Buggy code

1 0 N/A N/A

Looking at their solutions themselves, we also calculated the

number of “alternate” solutions provided per DebugIt, meaning
ones that deviated from what we had originally intended. For
Challenge A1, the intended final solution included two parallel
circuits; however, two groups provided only one parallel circuit,
which still fulfilled the intended final state (all LEDs blinking
together). For Challenge A2, only one group provided an
alternate solution; while they added seemingly redundant lines of
code, it still led to the correct final state. For Challenge B1, two
alternate solutions were provided. One involved creating an
‘always-on’ rather than codeable connection, and the other
involved an entirely different circuit diagram. Again, the
existence of these alternate solutions seem to highlight students’
freedom to experiment and tinker while solving these DebugIts,
often providing creative solutions beyond what was expected.

Looking at reports of their difficulties with DebugIts,
students mentioned a few issues, including not understanding
polarity within circuits, and being “worried about making too
many moves.” Several groups mentioned dealing with the
physical challenges of the kit itself, specifically the thickness of
the felt conductive strips, and the tenuous nature of the hooked

FABLEARN’17, Oct 2017, Palo Alto, CA USA Lui, Anderson, Kafai and Jayathirtha

6

connections between components. However, the most common
difficulty described by groups was understanding the
relationship between the given code and the circuit. For example,
one group wrote the most difficult part of the buggy code
challenge was, “understanding what everything meant,” or
specifically reading parts of the code to “see what had power” or
“what’s active” on the LilyPad. For another group, this became
clear through their process of solving the buggy circuit of A1. At
first, the group created an incorrect circuit that did not solve the
challenge. However, after reading and interpreting the code they
were able to provide a revised and correct solution to the
challenge. As the group noted: “[We] didn’t see this at first” with
an arrow pointing to a line of the program, thus illustrating their
realization that the code is intricately connected to the function
of an e-textiles circuit. Working with the DebugIts thus forced
students to deal with the interface between on and off-screen
elements, a key component of computational thinking.

Table 3: Description of Learned-Designed DebugIts

Group Challenge
Created

Type of Issue Solved? Moves
Made

1
Buggy
circuit

Electronic topology
with parallel circuit

Yes 2

2 Buggy code

End-state definition
within the sequence
(or incomplete
code)

No N/A

3 Buggy code

End-state definition
within the function;
variable
declaration/
interfacing; setting
up program
constants

Yes 6

4 Buggy code
End state definition
within the function

Yes 3

5.2 Creating/ Fixing Learner-Designed DebugIts
For the learner-designed DebugIts, only four of six groups were
able to complete the task of creating and trading challenges
within the allotted 30 minutes. Of the groups that finished, one
group chose to create a buggy circuit-working code combination,
while three decided upon a working circuit-buggy code
combination (see Table 3). Looking at the bugs themselves, two
of the four groups (1 and 4) presented issues that replicated the
instructor-designed DebugIts solved earlier (e.g., electronic
topology with parallel circuit, end state definition within the
function). Group 2, however, created an unconventional
challenge that involved adding lines to already working code for
a new end state (to make the LEDs blink, rather than staying on).
While this is not necessarily a traditional ‘bug’ or mistake,
‘solving’ this DebugIt did require a more complex understanding
of programming, something not completed by the receiving
group. Group 3, by far, had the most unique challenge (see Figure

7) since their code and circuitry did not follow the standards
presented in earlier challenges: code variables were redefined
within the loop despite being defined earlier, the circuit
contained a crossed wire (which actually worked because of the
insulation provided by the felt strip), and contained a seemingly
redundant ground pin. Despite these deviations from convention,
their DebugIt still worked and was solved by the receiving group.

For the learner-designed DebugIts, students again reported
having the most difficulty interpreting the connection between
the given code and circuit. One group wrote about challenges
related to “trying to understand the code with the circuit,” while
another group was more specific, writing that the difficulties lay
in “figuring out how the code effected [sic] the circuit.” Thus, as
with the instructor-designed DebugIts, students were forced to
engage at the interface between the physical and digital elements
of e-textiles through the design of their debugging challenges.

Figure 7: Group 3’s DebugIt with unconventional code and
circuitry. The code (left) features redefined variables within
the loop after already being defined earlier, while the circuit
has a redundant ground pin and crossed (yet working) wires.

5.3 Students Perceptions of DebugIt Activities
As a result of participating in the workshop, five of eight
students felt that they learned about circuitry. Kevin3 stated: “I
can relate it to engineering,” while Maria wrote about polarity: “I
learned how to make sure (-)’s and (+)’s matter.” Seven of eight
students believed that the DebugIt activities and kit helped them
learn coding. Anh stated that she learned “how it works and how
to create it,” while Maria pointed out how she gained
understanding in “how little words matter a lot” when coding.

When asked about their experience with the complex
reconstruction mats, most students (six of 10) chose fixing buggy
code as the most helpful to their learning; Noah stated: “It was
the hardest thing I did.” In terms of creating DebugIts, student
opinions were divided. Four of 10 students choose it as the least
helpful to their learning, explaining: “I learned a little, but not the
most out of this,” “too easy,” and “I really didn’t know how to do

3 This name and all following are pseudonyms.

Learning by Fixing and Designing Problems FABLEARN’17, Oct 2017, Palo Alto, CA USA

 7

it.” On the other hand, four choose creating DebugIts as the most
helpful to their learning. About solving and creating challenges,
Servino stated: “Both of these were very interactive and helped
us develop new techniques.” Maria added that “It was cool being
able to create my own challenge.” Thus, even though students
learned the most from the practice of debugging itself (i.e., fixing
code), the creation of DebugIts potentially highlights an area
where students felt the greatest opportunity to express
themselves creatively within the context of debugging.

6 DISCUSSION
Our results illustrate the feasibility of our reconstruction kit in
creating opportunities for rapid construction, deconstruction, and
reconstruction with e-textiles. In designing activities for fixing
and designing DebugIts, we allowed students to engage with
troubleshooting both on and off-screen. In the discussion, we
highlight both the affordances and limitations of our design, as
well as suggestions gleaned from our prototype and testing for
creating reconstruction kits for making at large.

6.1 Personalized Pathways of Productive Failure
One major affordance of the reconstruction kit is that its
modularity creates opportunities for students to enter into
personalized pathways of productive failure [13]. In other words,
each reconstruction kit can yield multiple debugging challenges,
all which can be customized to students’ own abilities and
desires. This differs from our earlier effort where we created the
pre-sewn debugging challenge that had a set level of difficulty,
and which could only be fixed once [8].

This customization afforded by the kit was evidenced by the
different pathways that groups took through the activities. For
instance, some groups took longer to grapple with basic concepts
of circuitry and code and needed more time with the instructor
DebugIts. When it became clear that groups were unable to finish
on their own, we sometimes asked them to work on an even
simpler task (e.g., get one LED to turn on) before moving back to
their original challenge. Other groups, however, were able to
finish challenges relatively independently. They tinkered and
experimented with multiple solutions along the way, something
evidenced by the high number of moves and alternate solutions
they reported. In this way, the DebugIts provided a continuously
personalizable ill-structured problem space for students to
engage; that is, based on their own knowledge and assumptions,
they could keep on ‘failing’ at debugging—tinkering and testing
out their ideas—until they arrived at the desired solution.

6.2 Engaging Interfaces between On and Off
Screen
Another main affordance of the reconstruction kit is how it
enables students to work at the interface between the on and off-
screen elements of e-textiles: the digital world of code and the
physical world of the circuits. Debugging within hybrid
computational spaces such as e-textiles and robotics is often
difficult and complex since it involves not only knowing different
domains (hardware design, computer programming) but also

understanding the interrelationship or interface between these
areas [12, 23]. This activity can become particularly
overwhelming in practice; for instance, a non-functioning e-
textiles or robotics project is more likely due to overlapping,
multi-domain issues rather than one isolated problem or topic.

Our kit addresses this issue by creating opportunities to
explicitly engage with this interface between digital and physical
elements. Specifically, this was accomplished through the careful
design of the DebugIts, which all purposefully addressed the
interrelationship between code and circuitry in e-textiles. This
was accomplished by setting up a system of only providing a
buggy circuit or buggy code, along with a functioning
complement (working code or working circuit) as a jumping off
point for students. Thus, rather than encountering a complex,
multi-domain problem all at once, groups were scaffolded into
the practice, knowing that they had to refer to either the working
circuit or code in order to understand what was broken in the
other part. This structure therefore reinforced their
understanding of the interrelationship between these elements,
something that was highlighted by the numerous comments that
students provided about this connection. In creating these pre-
compartmentalized issues then, we scaffolded students into the
practice of isolating parts of the system in order to understand
the whole, something that we earlier highlighted as key
component of computational thinking [24].

6.3 Designing Reconstruction Kits for Making
Many lessons about the design of reconstruction kits in general
can be gleaned by looking at experiences of students who
engaged with our prototype. One prominent issue that came up
was the finicky nature of the pieces themselves. While we
created connections that were easy to take apart (hooks and
strips), this sometimes thwarted students in their efforts to
creating working circuits; because they were so loose, they
would accidentally just fall apart. This points to the need to
strike a balance between easy deconstruction and secure
connections in the design of these kits. Another issue we
encountered was how the physical configuration of the pieces
themselves sometimes constrained students’ designs and
understanding. As described earlier, the felt strips we used
actually insulated the metallic thread such that crossed wires
were not an issue. As a result, students did not come to
understand the importance of how this can lead to short
circuits—a common problem within regular e-textiles
construction. Furthermore, the strips themselves tended to lead
more easily to the creation of parallel circuits than independent
circuits, something that might have caused students to
understand the former better the latter. From this perspective,
designers of any reconstruction kit should consider how the
particular configuration of pieces might shape student
understanding in unexpected ways.
 Beyond these material concerns however, one of the most
prominent lessons that can be learned from the development and
the implementation of our prototype is how the kit can create
opportunities for creative expression within the context of

FABLEARN’17, Oct 2017, Palo Alto, CA USA Lui, Anderson, Kafai and Jayathirtha

8

debugging. Research has already pointed to the affordances of e-
textiles production in creating spaces for aesthetic and narrative
expression, often supporting personal identity, social connection
and cultural relevance [3, 21, 22]. In this study, students lacked
this opportunity since they were not asked to produce artifacts of
their own. This is certainly a limitation of this study, and
something we aim to address in future research. However, we
argue that there was still room for creativity within context of
the activities that we provided, namely within the process of
problem solving. This can be seen within the alternate solutions
students provided for the instructor DebugIts, as well as their
own DebugIt designs, where they often presented unique and
unusual solutions.
 This is not to say that our workshop allowed for complete
creative freedom though. For the purposes of making things
accessible to students, we carefully outlined the steps that
students needed to take in designing DebugIt challenges. In some
respects, these constraints seemingly limited their creativity: one
student, for instance, specifically asked whether he could add
bugs to both the circuit and the code, something we did not allow
since it did not conform to our structure (we only asked students
to add bugs to either the circuit or the code). Future work looking
at students’ design of DebugIts might consider expanding upon
this aspect of creative expression, perhaps drawing from research
on youth designing games. Just as games ask others to solve a
puzzle, DebugIts also have an audience that is supposed to
provide a solution. The early designs of the Scratch DebugIt
studio have already illustrated the potential of engaging learners
not only in making projects but also in fixing them. Our findings
further add to this area by considering students’ design of
debugging challenges within making as something that can
become part of their learning, something that the development of
reconstruction kits may afford.

ACKNOWLEDGEMENTS
This work was supported by a grant (#1742140) from the
National Science Foundation to Yasmin Kafai and Mike
Eisenberg. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the National
Science Foundation, University of Pennsylvania, or the
University of Colorado, Boulder.

REFERENCES
[1] Paulo Blikstein and Dennis Krannich. 2013. The Makers' Movement and

FabLabs in Education: Experiences, Technologies, and Research. In
Proceedings of the 12th International Conference on Interaction Design and
Children (IDC ’13). ACM, New York, NY, 613-616.

[2] Peter Brusilovsky. 1993. Program visualization as a debugging tool for
novices. In Proceedings of INTERACT’93 and CHI’93 conference. ACM, New
York, NY, 29-30.

[3] Leah Buechley, Mike Eisenberg, Jaime Catchen, and Ali Crockett. 2008. The
LilyPad Arduino: Using Computational Textiles to Investigate Engagement,
Aesthetics, and Diversity in Computer Science Education. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI ’08).
ACM, New York, NY, 423-432.

[4] Sharon McCoy Carver and Sally Clarke Risinger. 1987. Improving children's
debugging skills. In Empirical studies of programmers: Second Workshop, Gary

Olson and Sylvia Sheppard, and Elliot Soloway (Eds.). Ablex Publishing Corp.,
Norwood, NJ, 147-171

[5] Ryan Chmiel and Michael C. Loui. 2004. Debugging: from novice to expert.
ACM SIGCSE Bulletin 36, 1 (March 2004), 17-21.

[6] Debug It!: 2010. http://scratched.gse.harvard.edu/resources/debug-itAccessed:
2017- 07- 27.

[7] Deborah A. Fields, Debora Lui, and Yasmin B. Kafai. 2017. Teaching
Computational Thinking with Electronic Textiles: High school Teachers’
Contextualizing Strategies in Exploring Computer Science. In Conference
Proceedings of 2017 International Conference on Computational Thinking
Education (CTE ’17). The Education University of Hong Kong, Hong Kong,
China, 67-72.

[8] Deborah Fields, Kristin Searle, and Yasmin B. Kafai. 2016. Deconstruction Kits
for Learning: Students' Collaborative Debugging of Electronic textile designs.
In Proceedings of the 6th Annual Conference on Creativity and Fabrication in
Education (FabLearn ’16). ACM, New York, NY, 83-85.

[9] Jean M. Griffin, 2016. Learning by taking apart: Deconstructing code by
reading, tracing, and debugging. In Proceedings of the 17th Annual Conference
on Information Technology Education (SIGITE ’16). ACM, New York, NY, 148-
154.

[10] Erica R. Halverson and Kimberly Sheridan. 2014. The maker movement in
education. Harvard Educational Review 84, 4 (2014), 495-504.

[11] Yasmin B. Kafai, and Quinn Burke. 2014. Connected code: Why children need to
learn programming. MIT Press, Cambride, MA.

[12] Yasmin B. Kafai, Deborah A. Fields, and Kristin Searle. 2012. Making the
connections visible: Crafting, circuitry, and coding in high school e-textile. In
Textile Messages: Dispatches from the World of E-Textiles and Education, Leah
Buechley, Kylie Peppler, Michael Eisenberg, and Yasmin Kafai (Eds.). New
Literacies and Digital Epistemologies. Volume 62. Peter Lang Publishing
Group, New York, 85-94.

[13] Manu Kapur. 2008. Productive Failure. Cognition and Instruction 26, 3 (2008),
379-424.

[14] Breanne K. Litts, Yasmin B. Kafai, Kristin A. Searle, and Emily Dieckmeyer.
2016. Perceptions of Productive Failure in Design Projects: High School
Students’ Challenges in Making Electronic Textiles. In Proceedings of
International Conference of the Learning Sciences, Volume 2 (ICLS ’16).
International Society of the Learning Sciences, Singapore, 1041-1047.

[15] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth
Simon, Lynda Thomas, and Carol Zander. Debugging: a review of the
literature from an educational perspective. Computer Science Education 18, 2
(2008), 67-92.

[16] Seymour Papert. 1980. Mindstorms: Children, computers, and powerful ideas.
Basic Books, Inc., New York.

[17] Roy D. Pea. 1986. Language-independent conceptual “bugs” in novice
programming. Journal of Educational Computing Research 2, 1 (1986), 25-36.

[18] Kylie Peppler and Diane Glosson. 2013. Stitching circuits: Learning about
circuitry through e-textile materials. Journal of Science Education and
Technology 22, 5 (2013), 751-763.

[19] Mike Petrich, Karen Wilkinson, and Bronwyn Bevan. 2013. It looks like fun,
but are they learning. In Design, make, play: Growing the next generation of
STEM innovators, Margaret Honey and David E. Kanter (Eds.). Routledge, New
York, 50-70.

[20] Mitch Resnick, and Brian Silverman. 2005. Some Reflections on Designing
Construction Kits for Kids. In Proceedings of the 4th International Conference on
Interaction Design and Children (IDC ’05). ACM, New York, NY, 117-122.

[21] Kristin A. Searle and Yasmin B. Kafai. 2015. Culturally responsive making
with American Indian girls: Bridging the identity gap in crafting and
computing with electronic textiles. In Proceedings of the Third Conference on
GenderIT. ACM, New York, NY, 9-16.

[22] Kristin A. Searle, Deborah A. Fields, Debora A. Lui, and Yasmin B. Kafai.
Diversifying high school students' views about computing with electronic
textiles. In Proceedings of the tenth annual conference on International
computing education research (ICER ’14). ACM, New York, NY, 75-82. ACM.

[23] Florence R. Sullivan. 2008. Robotics and science literacy: Thinking skills,
science process skills and systems understanding. Journal of Research in
Science Teaching 45, 3 (2008), 373-394.

[24] Jeannette M. Wing. 2006. Computational thinking. Communications of the
ACM 49, 3 (March 2006), 33-35.

