
26 COMMUNICATIONS OF THE ACM | AUGUST 2016 | VOL. 59 | NO. 8

V
viewpoints

P
H

O
T

O
 C

O
U

R
T

E
S

Y
 O

F
 R

O
B

O
G

A
L

S
 W

E
L

L
E

S
L

E
Y

Education
From Computational Thinking
to Computational Participation
in K–12 Education
Seeking to reframe computational thinking as computational participation.

thinking.7 Computational participation
involves solving problems, designing
systems, and understanding human
behavior in the context of computing.
It allows for participation in digital ac-
tivities. Many kids use code outside of
school to create and share. Youth-gen-
erated websites have appeared to make
and share programmable media online.
These sites include video games, inter-
active art projects, and digital stories.
They are inherently do-it-yourself (DIY),
encouraging youth programming as an
effective way to create and share online,

C
OMPUTATIONAL THINKING HAS
become a battle cry for cod-
ing in K–12 education. It is
echoed in statewide efforts to
develop standards, in chang-

es to teacher certification and gradua-
tion requirements, and in new curricu-
lum designs.1 The annual Hour of Code
has introduced millions of kids to cod-
ing inspired by Apple cofounder Steve
Jobs who said, “everyone should learn
how to program a computer because
it teaches you how to think.” Compu-
tational thinking has garnered much
attention but people seldom recognize
that the goal is to bring programming
back into the classroom.

In the 1980s many schools featured
Basic, Logo, or Pascal programming
computer labs. Students typically re-
ceived weekly introductory program-
ming instruction.6 These exercises
were often of limited complexity, dis-
connected from classroom work, and
lacking in relevance. They did not de-
liver on promises. By the mid-1990s
most schools had turned away from
programming. Pre-assembled multi-
media packages burned onto glossy
CD-ROMs took over. Toiling over syn-
tax typos and debugging problems
were no longer classroom activities.

Computer science is making a
comeback in schools. We should not
repeat earlier mistakes, but leverage
what we have learned.5 Why are stu-
dents interested in programming?

Under what circumstances do they do
it, and how?2 Computational think-
ing and programming are social, cre-
ative practices. They offer a context for
making applications of significance
for others, communities in which de-
sign sharing and collaboration with
others are paramount. Computational
thinking should be reframed as com-
putational participation.

Computational Participation
This idea expands on Jeannette Wing’s
original definition of computational

DOI:10.1145/2955114	 Yasmin B. Kafai

Students in a Makey Makey workshop conducted by volunteers from Robogals Wellesley.

http://dx.doi.org/10.1145/2955114

AUGUST 2016 | VOL. 59 | NO. 8 | COMMUNICATIONS OF THE ACM 27

viewpoints

V
viewpoints

Broadening computational par-
ticipation gets students into the club-
house. The next challenge is to help
them develop fluency that permits
them to engage deeply, making their
participation meaningful and enrich-
ing. These levels of computational
participation are still rare. To learn
to code students must learn the tech-
nicalities of programming language
and common algorithms, and the so-
cial practices of programming com-
munities.

Conclusion
Computational participation provides
new direction for programming in
K–12 education. It moves us beyond
tools and code to community and con-
text. It equips designers, educators,
and researchers to broaden and deep-
en computational thinking on a larger
scale than previously. Users of digital
technologies for functional, political,
and personal purposes need a basic
understanding of computing. Students
must understand interfaces, technolo-
gies, and systems that they encounter
daily. This will empower them and pro-
vides them with the tools to examine
and question design decisions they en-
counter. Computing for communicat-
ing and interacting with others builds
relationships. Education activist Paulo
Freire once said that “reading the word
is reading the world.” He was right.
Today, reading code is about reading
the world. It is needed to understand,
change, and remake the digital world
in which we live.	

References
1.	 Grover, S. and Pea, R. Computational thinking in

K–12: A review of the state of the field. Educational
Researcher 42, 2 (2013), 59–69.

2.	 Kafai, Y.B. and Burke, Q. Connected Code: Why
Children Need to Learn Programming. MIT Press,
Cambridge, 2014.

3.	 Kafai, Y.B. and Burke, Q. Constructionist gaming:
Understanding the benefits of making games for learning.
Educational Psychologist 50, 4 (2015), 313–334.

4.	 Margolis, J. Estrella, E., Goode, G., Holme, J. J. and
Nao, K. Stuck in the Shallow End: Race, Education, and
Computing. MIT Press, Cambridge, 2008.

5.	 Palumbo, D.B. Programming language/problem-
solving research: A review of relevant issues. Review
of Educational Research 60, 1 (1990), 65–89.

6.	 Papert, S. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, New York, 1980.

7.	 Wing, J.M. Computational thinking. Commun. ACM 49,
3 (Mar. 2006), 33–35.

Yasmin B. Kafai (kafai@gse.upenn.edu) is a Professor
and Chair of the Teaching, Learning, and Leadership
Division in the Graduate School of Education at the
University of Pennsylvania.

Copyright held by author.

and connect with each other, unlike
learned disciplines such as algebra or
chemistry. Through individual endeav-
or mixed with group feedback and col-
laboration the DIY ethos opens up three
new pathways for engaging youth.

From building code to creating
shareable applications. Programming
that prizes coding accuracy and effi-
ciency as signifiers of success is boring.
To learn programming for the sake of
programming goes nowhere for chil-
dren unless they can put those skills to
use in a meaningful way. Today children
program to create applications like vid-
eo games or interactive stories as part of
a larger learning community.3 They are
attracted to the possibility of creating
something real and tangible that can
be shared with others. Programming is
not an abstract discipline, but a way to
“make” and “be” in the digital world.

From tools to communities. Coding
was once a solitary, tool-based activity.
Now it is becoming a shared social prac-
tice. Participation spurred by open soft-
ware environments and mutual enthusi-
asm shifts attention from programming
tools to designing and supporting com-
munities of learners. The past decade
has brought many admirable introduc-
tory programming languages to make
coding more intuitive and personal.
Developers and educators realize that
tools alone are not enough. Audiences
are needed, and a critical mass of like-
minded creators. Scratch, Alice, and
similar tools have online communities
of millions of young users. Children can
work and share programs on a single
website. This tacitly highlights the com-
munity of practice that has become a
key for learning to code.

From “from scratch” creation to “re-
mixing.” These new, networked com-
munities focus on remixing. Students
once created programs from scratch
to demonstrate competency. Now they
pursue seamless integration via remix-
ing as the new social norm, in the spirit
of the open source movement. Sharing
one’s code encourages others to sam-
ple creations, adjust them, and add to
them. Such openness heightens poten-
tial for innovation across the board.
Young users embrace sampling and
sharing more freely, challenging the
traditional top-down paradigm.

These three shifts signal a social turn
in K–12 computing. They move from a

predominantly individualistic view to
greater focus on underlying social and
cultural dimensions of programming.
We should rethink what and how stu-
dents learn to become full participants
in networked communities.

Broadening and Deepening
Computational Participation
It is not possible to addresses all of the
difficulties of implementing compu-
tational participation by placing stu-
dents in groups, having them program
applications, and encouraging them
to remix code. Computational par-
ticipation will present new challenges
in bringing programming back into
schools. How do we facilitate broader
and deeper participation in the design
of the programming activities, tools,
and practices?

Computational thinking is a social
practice. We must broaden access to
communities of programming.4 Chil-
dren are not “digital natives” who
naturally migrate online. Establishing
membership in the programming com-
munity is not easy. Groups with power-
ful learning cultures are often exclusive
cultures. Students need strategies to
cope with the vulnerability of sharing
one’s work for others to comment on
and remix.

In addition, students need a more
expansive menu of computing activi-
ties, tools, and materials. Designing
authentic applications is an important
step in the right direction, but games,
stories, and robotics are not the only
applications for achieving this goal.
We need different materials to expand
students’ perspectives and perceptions
of computing.

How do we facilitate
broader and deeper
participation in
the design of
the programming
activities, tools,
and practices?

