
In C. Steinfield, B. Pentland, M. Ackerman, &. N. Contractor (Eds.), Communities
and Technologies 2007 (pp. 545–564). New York: Springer.

High Tech Programmers in Low-Income
Communities: Creating a Computer Culture in a
Community Technology Center

Yasmin B. Kafai, Kylie A. Peppler & Grace M. Chiu
University of California, Los Angeles

Abstract. In this paper, we will apply Oakes’ (1992) technical, normative, and
political dimensions of school reform to the case of the Computer Clubhouse, a
community technology center, to illustrate how the barriers to change in after-
school settings are similar to that in schools. We were concerned with the need to
help young people become more technologically fluent, particularly in their ability
to computer program. Our analysis builds on two years of observation and
community development at the Computer Clubhouse, where programming had
initially not taken root. In our discussion, we will focus on the impacts of the
normative and technical aspects of change, such as the introduction of a new
programming environment oriented towards media production, and the increased
amount of mentor support.

For the last twenty years, issues of the digital divide have driven efforts
around the world to address the lack of access to computers and the Inter-
net, pertinent and language appropriate content, and technical skills in low-
income communities (Schuler & Day, 2004a and b). The title of our paper
makes reference to a milestone publication (Schon, Sanyal, & Mitchell,
1998) that showcased some of the early work and thinking in this area.
Schon, Sanyal and Mitchell’s book edition included an article outlining the
Computer Clubhouse, a type of community technology center model,
which was developed to create opportunities for youth in low-income
communities to become creators and designers of technologies by Resnick,
Rusk, and Cooke (1998). The model has been very successful scaling up,
with over 110 Computer Clubhouses now in existence worldwide.

Walk into any Computer Clubhouse and you are likely to see
youth creating and manipulating graphics, animations, videos, music, and

2 High Tech Programmers in Low-Income Communities: Creating a Computer
Culture in a Community Technology Center

often integrating multiple media. The professional image-processing tool,
Adobe Photoshop, is particularly popular. Indeed, a “Photoshop culture”
has emerged at many Clubhouses, with youth proudly displaying their vis-
ual creations on bulletin boards (both physical and online), sharing Photo-
shop techniques and ideas with one another, and helping Clubhouse new-
comers get started with the software. What you don’t see very often, if at
all, is a culture of programming that was originally part of the Computer
Clubhouse vision to promote technological fluency – “the ability to refor-
mulate knowledge, to express oneself creatively and appropriately, and to
produce and generate information (rather than simply to comprehend it)”
(National Research Council, 2000). Computer programming is integral
knowledge across disciplines from the sciences to the arts, yet minorities
and low-income students are notably absent in computer science-related
fields. The Computer Clubhouse, therefore, potentially represents an im-
portant and alternative pathway towards technological fluency for mar-
ginalized youth.

In this paper, we will examine why programming, an aspect of
technological fluency, despite all good intentions did not become part of
the larger Computer Clubhouse culture. Thus, one goal of our investiga-
tion is to introduce the issue of change in community technology centers.
While discussions about change are prominent in schools, they have not
been part of the conversation around communities and technologies. The
second goal is to introduce a successful example that illustrates our efforts
to extend technological fluency activities in one Computer Clubhouse. We
will present findings that examine our efforts from different technical and
normative dimensions in line with Oakes’ framework (1992; Oakes,
Rogers, Lipton, & Morrell, 2002): (1) activities in the Computer Club-
house before and after the introduction of a programming environment; (2)
mentoring practices and technology conceptions of Clubhouse members;
and (3) partnerships between community and local institutions. As we will
argue, it was not any particular one, but the combination of all three of
these factors that was responsible for seeding a programming culture with
high tech designers in a low-income community. We intend to contribute
to the larger debate on creating equitable technology participation in crea-
tive design across all communities.

Background

In 2000, the U.S. Department of Commerce found that Internet access was
significantly dependent on household income and minority status. In the

Background 3

attempt to bridge this wide disparity of resources, more than 2,000 com-
munity technology centers (CTCs) have opened in the United States in the
last decade, specifically to provide better access to technology in economi-
cally disadvantaged communities. Fortunately, recent legislation has reap-
propriated funding to further these efforts, thus establishing CTCs as a fix-
ture in the landscape of technology access (Schon et al., 1998). But most
CTCs support only the most basic computer activities (such as word proc-
essing, email, and internet browsing), so participants do not acquire the
type of fluency described in the NRC report. Similarly, many after-school
centers (which, unlike CTCs, focus exclusively on youth) have begun to
introduce computers, but they too tend to offer only introductory computer
activities, along with educational games (Vasquez & Duran, 2000; Zhao,
Mishra, & Girod, 2000). If members of low-income and minority commu-
nities gain access to new technologies, they are introduced in such a way
that neglects to take the local context into consideration, and are often pre-
sented in such ways that reinforce rote learning activities rather than cogni-
tively demanding activities (Warschauer, 2004).

A small subset of after-school centers and CTCs, such as those in
the Computer Clubhouse network, explicitly focus on the development of
technological fluency, moving beyond basic computer skills and helping
youth learn to design, create, and invent with new technologies (Resnick et
al., 1998). However, even at those centers focusing on fluency, youth
rarely become engaged in computer programming. There is no “program-
ming culture” analogous to the “Photoshop culture” which is so deeply
embedded in most Clubhouses. On the one hand, traditional notions of
programming see its value in fostering algorithmic and abstract thinking
and problem solving skills (National Research Council, 2000). Yet, others
might argue that these notions of programming are overly narrow, espe-
cially for CTC settings, and would be better placed in schools or technical
colleges. Thus it shouldn’t come as a surprise that programming did not
take hold even in places like the Computer Clubhouse, which are predis-
posed by its vision and founders.

In understanding the challenges of bringing programming into
Computer Clubhouses, we searched for frameworks that would help us un-
derstand the complexity of the situation. Some scholars have used models
of technology diffusion to understand the successes and failures of how
new technologies get adopted and integrated by users (Rogers, 1995).
Within educational contexts, others have examined classroom practices of
teachers to understand the lack of computer use in schools (Cuban, 1986,
2003). We turned to Oakes’ framework because this model of reform rec-
ognizes that in order to expand access for low-income and minority stu-
dents, change must occur in several dimensions. Oakes (1992) argues that

4 High Tech Programmers in Low-Income Communities: Creating a Computer
Culture in a Community Technology Center

equity-minded reform efforts must go beyond the technical (curricular and
pedagogical) aspects and include changes in the normative (longstanding
norms and conceptions) and political (institutional support within larger
community) dimensions of an educational institution. This framework pro-
vides directives for those interested in bridging the missing gaps of the
digital divide in non-school settings, particularly CTCs like the Computer
Clubhouse.

Our program sought to address the technical and normative dimen-
sions of Oakes’ (1992) reform model and involved two critical levels of
support (i.e., the addition of new media-rich programming software and
the increased presence of mentors), as it was clear that we needed to tackle
change in the computer culture on multiple fronts. Through our observa-
tions at the Computer Clubhouse, we found that youth have an interest in
videogames, music videos, cartoon animations, and interactive, design-
based art, which are a natural springboard into creating and programming.
Thus we started with addressing the overly narrow notion of programming
by focusing on the cultural artifacts that it could produce. This led us to
recognize the benefits of programming as creative media production,
which included a broader range of digital media texts, ranging from video
games to “media mixes” of images, video and texts. With that in mind, we
set out to create a media-rich programming environment, called Scratch
(described later), that would provide youth with experiences creating and
designing their own interfaces and applications (Resnick, Kafai, & Maeda,
2003). We argue that youth require technological fluency of how to con-
struct new media in order to become critical consumers and producers.
We think that such directions in community technology developments are
particularly important for urban youth, who are often seen as pushing new
adaptations and transformations of media, but are also perceived as stand-
ing on the sidelines of technology development and production.

We also realized that we needed to address support systems, in
particular mentoring interactions in the Computer Clubhouse, to make
learning and creative expressions the primary purpose of programming ac-
tivities and not just the acquisition of technology skills. While mentors are
often characterized as teachers and guides who provide information and
advisement, and help identify mentee strengths and areas of improvement,
there is in fact a rich literature that suggests mentors often assume addi-
tional roles in mentoring interactions. According to Flaxman (1992), men-
tors can take on various roles as teacher, advisor, supporter and compan-
ion. In our model, mentors who were introduced to the Computer
Clubhouse were inexperienced programmers, providing an opportunity for
mentees to feel more empowered in the learning process and even rein-
force their knowledge in programming when called upon to act as a

Context and Approach 5

teacher to the mentors. There is little discussion that expands the contin-
uum of mentoring roles from teachers to learners and thus would be more
inclusive of a view that sees mentoring as a reciprocal rather than a hierar-
chical relationship. Such a view of mentoring counteracts the implicit
deficit thinking present in mentoring approaches, which oftentimes assume
a patronizing undertaking, where urban youth need to be rescued from
their self-destructive behavior (Flaxman, 1992; Guetzloe, 1997).

The focus of our research, then, was to document, describe, and
analyze the Computer Clubhouse at the different levels of technical and
normative changes, highlighting key aspects for others planning to seed a
computing culture. Applied to the Computer Clubhouse setting, the techni-
cal dimension involved the introduction of new software, the organization
of new activities such as workshops and gallery presentations, and the ad-
dition of mentors that were inexperienced programmers. Our analyses
were focused on the following questions: How widespread was the adop-
tion of Scratch within the Computer Clubhouse? How well did mentors
support Scratch activities? Normative dimensions address longstanding
norms and conceptions about what programming is and are held by every-
one at the site – including coordinators, staff, parents, mentors, and youth.
Here, our analyses were focused on the following two questions: What are
considered prototypical-programming projects? What types of beliefs do
youth hold about their own ability to computer program? Finally, the po-
litical dimension involved introducing two partnering universities –
U.C.L.A. and M.I.T. – to the local Clubhouse, where professors along with
the computer programmer of Scratch personally visited the Computer
Clubhouse on multiple occasions to showcase and share Scratch projects.
While this political dimension was observed, it was not directly addressed
in this round of analyses.

Context and Approach

The Computer Clubhouse where we conducted our research is located in
South Los Angeles and serves primarily African-American and Latino/a
youth, ages 8-18. Two full-time coordinators run the day-to-day operations
and facilitate activities at the Computer Clubhouse, where adults play an
important role in providing technical, intellectual, and emotional support
for Clubhouse members. The volunteer mentors were college undergradu-
ates, who were enrolled in an Education Minor course that focused on
gender, culture and technology. As part the course requirement, these Un-
dergraduates became mentors at the Computer Clubhouse, where they

6 High Tech Programmers in Low-Income Communities: Creating a Computer
Culture in a Community Technology Center

helped Clubhouse members in planning, developing and completing vari-
ous design projects, while simultaneously learning various aspects of pro-
gramming. We had a total of 38 Undergraduates enrolled over the course
of four quarters (Kafai, Desai, Peppler, Chiu, & Moya, in press). The Un-
dergraduates were all third and fourth year Liberal Arts Majors with little
to no prior computer programming experience.

Over the course of the last three years, we conducted extensive
field work and collected a total of 213 field ethnographic field notes at the
Computer Clubhouse, capturing Clubhouse members’ various design ac-
tivities – before, during and after the intervention was introduced. In addi-
tion, we coded each sustained mentoring interaction for its content, distin-
guishing between design, games, web, homework, and social activities.
We defined sustained mentoring as any activity where a mentor was inter-
acting with a mentee over an extended period of time (a minimum of 15-20
minutes). In the field notes, either the length of the passage or the descrip-
tion of the amount of time that took place during the activity indicated this.
Design activities involved the use of programming, 3D-animation, and
graphic software such as Kai’s SuperGoo, Bryce5, Photoshop, KidPix,
game design programs such as RPGmaker, and music production software.
Game activities included both games on the computer, such as Roller
Coaster (Tycoon), School Tycoon, video and online games, such as
Whyville.net, as well as board and card games, foosball, and air hockey.
Web activities involved web surfing with a mentee, while homework in-
volved mentors helping mentees with their homework. We also created a
“Personal” category to include all social activities and interactions between
the mentor and mentee that establish and build upon the interpersonal rela-
tionship outside of the context of the other activities. Examples include a
mentee or mentor sharing information about their lives to the other, advis-
ing, and/or listening. Four graduate students, in accordance with these
three categories, coded all field notes independently. A subset consisting
of 64 field notes was coded by all and revealed a reliability of 85-92%.
The remaining field notes were then recoded independently.

Throughout the intervention, various design projects – including
Scratch projects created by both members and Undergraduate mentors –
were periodically collected, counted, and coded (Kafai, Peppler, Alavez, &
Ruvalcaba, 2006). For the analysis, we took screenshots of program
graphics and entered them into a spreadsheet along with short descriptions
of content and functionality. Programs were then coded into four catego-
ries based on project type (animation, game, story, graphics, and other).

We also conducted interviews with members and undergraduate
mentors, asking about their Clubhouse experience and the development of
their programming skills (Peppler, in preparation). Each interview lasted

Findings 7

about 15-20 minutes and questions included the following: What is com-
puter programming to you? Does Scratch remind you of anything that you
do at school or at home? And, how does Scratch differ from other com-
puter software programs? All of the interviews were transcribed in prepa-
ration for later analyses. Researchers coded for themes rather than indi-
vidual statements because these were group interviews and participants
often expressed agreements with statements voiced by others; thus we did
not expect every participant to repeat impressions.

Findings

In the following sections, we will illustrate the multiple levels of support
needed for introducing programming into the Computer Clubhouse setting.
We will start with an analysis of Clubhouse activities before and after the
introduction of Scratch to illustrate the changes we witnessed on the tech-
nical level. Included in this documentation is a perspective on the range of
mentoring activities that took place and the range of programming projects
created at the Computer Clubhouse. From the normative level, we will re-
view the interviews with youth for how they conceptualized their activities
and showcase projects that became part of the programming culture in the
Computer Clubhouse.

Technical Changes: Integrating Programming into the
Clubhouse Design Portfolio

From our analyses of the field notes 2003–2004, we know that prior to the
introduction of Scratch, programming activities did not occur in the Com-
puter Clubhouse in South Los Angeles. Although Microworlds software, a
visual Logo computer programming system, was available as part of the
Computer Clubhouse’s broad suite of software, neither adult coordinators
nor members used it. While the Computer Clubhouse’s most popular
software titles enabled multiple media integration and manipulation, pro-
gramming was considered a “stand alone” task and was therefore per-
ceived as incompatible and irrelevant to popular design activities.

We developed Scratch, a programming environment with the abil-
ity to import and manipulate various media files that could be integrated
with existing creative software. Arguably a full fledged programming lan-
guage, Scratch (see Figure 1) vastly differs from other novice-friendly vis-
ual programming environments in that it utilizes a user-friendly building
block command structure, eliminating debugging processes and the risk of

8 High Tech Programmers in Low-Income Communities: Creating a Computer
Culture in a Community Technology Center

syntax errors (Resnick et al. 2003; Maloney et al. 2004). Figure 1 is a
screen shot of the Scratch user interface. The left most portion of the
screen lists the palette of available commands. The middle panel lists the
commands that the user has chosen to control the objects or sprites listed in
the bottom right panel. The top right panel is the design screen.

Fig. 1. Screenshot of the Scratch user interface.

Analysis of a large body of field notes has revealed that several

pathways into the programming culture evolved over time at the Computer
Clubhouse. The Clubhouse Coordinator introduced Scratch in Fall 2004.
Although Scratch was loaded on several of the computers at this time, less
than 10 members took advantage and created anything using the new soft-
ware. Beginning in Winter 2005, a steady stream of undergraduate men-
tors joined the Clubhouse and the first explosion of Scratch activity was
seen starting in early January 2005. Youth were encouraging one another
to try out the program, and mentors worked with youth to create the first
Scratch projects. Commonly, mentors would engage youth that had never
worked in Scratch before by suggesting to import some of the pictures that
they had stored in their folders on the Clubhouse server. At this point in
time, the archive of projects represented a predominance of graphics-only
projects that lacked any computer programming, which was due in part to

Findings 9

the high volume of youth opening the program without any official orien-
tation. Print outs of projects quickly began to cover the walls and Scratch
slowly became the leading design activity within a few months of its intro-
duction.

In Winter 2006, there was an even greater interest in Scratch and
some new things began happening within the computing culture. Scratch
was used among the youth as a measure of membership in the local cul-
ture: new members wanting to establish clear membership in the commu-
nity had to first create at least one Scratch project and store it for others to
play on the central server. For the first time, more expert youth were seen
mentoring other youth in Scratch. Scratch experts had a high-status posi-
tion within the local culture and some youth had emerged as general ex-
perts that mentors, coordinators, and other youth consulted for help with
Scratch, while other youth had specialized in certain genres or tricks
within Scratch. In addition, groups of youth had begun working collabora-
tively together to create projects with a group name, such as “DGMM,” for
the Dang Good Money Makers. Youth also began to work independently
of mentoring support, reflective of the high volume of projects beginning
in June 2006, on complex projects and problems that they encountered in
Scratch.

Fig. 2. Portfolio of Computer Clubhouse Activities (a) before [left] and
(b) after the Scratch Introduction [right]

To further understand the impact of introducing new design soft-
ware into the Clubhouse environment, we examined the field notes as re-
cords of sustained mentoring activities during winter and spring of 2004,
2005, and 2006. The “Clubhouse Design Portfolio” is therefore the aver-
age of sustained mentoring activities during these different time points. We
interpret these findings as being a proxy for Clubhouse activities, of which
we would otherwise have no other indication. Figures 2a and 2b summa-
rize the portfolio of Clubhouse design activities before and after the intro-
duction of Scratch. One finding is that programming activities increased

10 High Tech Programmers in Low-Income Communities: Creating a
Computer Culture in a Community Technology Center

as Scratch became embedded in the popular suite of design tools that
Clubhouse members utilized on a daily basis.

Proliferation of Programming Activities in the Clubhouse

The design portfolio illustrates how programming had become part of the
Computer Clubhouse activities. Over the course of the first 18 months we
tracked Scratch development and collected all projects created by Club-
house members (see Figure 3).

Fig. 3: Scratch Project Creation 2005-2006

There were several reasons for this approach, but important to the
purposes of this paper is that it allowed us to peak at the computing culture
when even mentors and researchers were not present at the site to answer
questions about the sustainability of the programming culture in the ab-
sence of mentors. The number of new Scratch projects is also a good indi-
cation of general interest in computer programming over time. Figure 3 is
a graph of the first 18 months of new Scratch projects arranged by the
creation date and grouped by month. There are various peaks and valleys
to the bar graph, indicating that the majority of interest in Scratch occurs
from January through August and there is less interest in the fall months

Findings 11

between September and December. This is probably due to several reasons
but can be somewhat explained by the presence of Undergraduate mentors
from January thru March. Although further analyses are underway, it is
difficult to explain the relative peaks and lows within this period (Peppler,
in preparation). In addition, there is also a high volume of projects being
created over the summer months (especially in June and July of 2006) in
the absence of extensive mentoring support. We interpret this as an indica-
tion of the extended and prolonged impact that mentoring support can have
on a programming culture beyond (or at least temporarily beyond) the
weekly visits of the mentors.

The total number of Scratch projects paints a picture of an active
computing culture, but what exactly are youth creating in Scratch? Be-
cause Scratch was designed to flexibly promote self-expression, youth
have appropriated the software in a number of ways. Over the course of
eighteen months, we collected over 500 programming projects created by
members of the Clubhouse, some designed alone and others with mentors.
We found that 44% of these projects fell into the category of animations
with and without user manipulation, followed by 23% of graphics-only
projects, and 15% of game projects focusing on fighting, sports and adven-
ture; 14% of projects escaped a clear categorization because they did not
provide enough detail.

We realize that this archival analysis of programming artifacts
provides us only with a partial representation of a computer culture for
multiple reasons: to begin with, our archive, while extensive, did not cap-
ture all Scratch programs designed but only those saved. The archive does
not tell us what motivated Clubhouse members to create their programs,
what they value in their designs, and how they compare them to their other
design projects. We also could not address the equally important social
and local influences at work that contributed to the design of the programs.
Notwithstanding these limitations, the large number of Scratch programs
provides a compelling example that members were active in creating nu-
merous programs over an extended period of time and even without ex-
plicit curricular goals, grades, or instruction.

Social Support: Mentoring Activities in the Clubhouse

We also understood that access to relevant programming was only one of
the technical aspects necessary to develop a culture of programming. So-
cial support structures were equally important. Before Scratch was intro-
duced, we observed that programming was a term that was rarely used in
the Computer Clubhouse. Realizing that simply providing access to pro-

12 High Tech Programmers in Low-Income Communities: Creating a
Computer Culture in a Community Technology Center

gramming software would be insufficient, we created opportunities for
Clubhouse members to interact with adult mentors who were learning to
program as well (Kafai et al., in press). By introducing Undergraduate
mentors and hosting Scratch workshops and showcasing events, we sought
to establish new norms around programming. With daily support and ex-
posure to Scratch, programming developed into a regular, socially ac-
cepted practice at the Computer Clubhouse. Throughout the showcasing
events of Scratch projects, both mentor and member works were regarded
as valuable.

It is also important to point out that Undergraduate mentors were
not introduced to Clubhouse members as experts or teachers. In fact, the
Undergraduate mentors were presented as fellow novices and collabora-
tors, thus supporting one of the existing norms of the Computer Clubhouse
learning model. As a result, many Clubhouse members emerged as resi-
dent experts of Scratch, thereby challenging the notion that programming
is strictly for adults as demonstrated in the following field note excerpt:

As we were both Scratch novice[s], Kathy went to ask an African American
girl, whose name was Chenille, to help us … she showed us Scratch skills such
as how to use the glide and coordinates function … When she gave us instruc-
tions, she looked very confident with her instructor-like tone.

While the traditional role of teacher surfaced—as some mentors attempted
to dictate or control their situation as they would in a classroom—it be-
came evident that Scratch provided additional opportunities for mentors to
engage as learners. The role as learner occurred when the mentee led with
an intention to teach, and there was evidence that the mentor was learning
from the interaction. The mentee would be actively leading and explaining
an activity with the mentor as exemplified in the following field note ex-
cerpt:

After forming the basic animations and narration, we still had to figure out how
to animate the soldier’s beheading. Amanda became our best source as she
came over and offered to help. She showed us some of her project so then we
could understand how she switched head graphics. We learned from looking at
Amanda’s animation grid that in order to switch graphics, we had to apply a
switch costumes function at the end of the previous animations for that cos-
tume...

Our analyses revealed that while the Undergraduate mentors sustained
various mentoring interactions ranging from teaching to learning, the
prevalence of mentoring interactions that placed the mentor in the role of

Findings 13

learner, observer or co-constructor – all roles which imply a more recipro-
cal and equitable relationship between mentor and mentees.

Idea Diffusion of Media-Rich Programming

The quantitative changes in design and mentoring activities were accom-
panied by qualitative changes in Scratch program genres and Clubhouse
members’ conceptions of programming. Some youth emerged that took on
strong leadership roles. These leaders began to work with groups of 10-12
other youth to seemingly manufacture certain genres of projects; one ex-
ample of this is the “Low-Rida” movement that began in January 2006.
Within urban youth cultures there is a lot of interest in customizing cars.
Television shows, like MTV’s Pimp My Ride, have popularized this trend
within mainstream American culture. Previously in the Clubhouse, a
popular activity was to manipulate digital pictures of expensive cars, in-
serting a picture of yourself next to “your” car. Made popular by a young
bi-racial African-American and Latino youth named Dwight, a culture of
“Low Rida” interactive art projects has emerged. In one of Dwight’s first
projects, “Low Low,” the viewer controls the hydraulics on two cars using
arrow and letter keys. According to Dwight, the essential parts to his “Low
Rida” project are the cars, the urban background, the graffiti-like lettering,
and the speakers (see Figure 4). It is important to note that the Low Rida
movement emerged in the absence of mentoring support. The members
conceptualized the idea and executed the projects almost entirely by them-
selves.

Several new Low Rida projects have emerged based on Dwight’s
earlier work, resulting in a widespread use of Scratch. In these projects,
the creators have used Photoshop, Painter7, Image editors, and computer
programming for creative production. By participating in the Low Rida
movement, youth gain access to skills, empowering them to become de-
signers of digital media. This is an important aspect of participation in an
informal learning culture where contribution is valued. Projects like these
eliminate barriers between high and low pop cultures (Sefton-Green & Re-
iss, 1999) by taking an urban youth culture theme and reinventing it using
high status knowledge, such as software design.

14 High Tech Programmers in Low-Income Communities: Creating a
Computer Culture in a Community Technology Center

Figure 4: Screenshots of Dwight’s “Low Rida” projects are in the upper and
lower right corners. Other members of the Clubhouse created the two other
“Low Rida” Scratch projects. In the upper left, Dwight’s brother customized
his ride by painting it gold and drawing in gold hubcaps. In the lower left, an
8 year-old girl creates her own version of the Low Rida project, inserting a
portrait that she created of herself using Painter7 software.

Concepts of Media-Rich Programming

We also interviewed a large number of youth to better understand how
they are making sense and appropriating Scratch. General conceptions of
Scratch were overwhelmingly positive with youth proclaiming that it’s
their “favoritest thing ever.” According to youth, Scratch is extremely
flexible and has no or few limitations. Having trouble defining what
Scratch was exactly most youth described it as “something that allows you
to use your imagination” or as “a system that will allow you to do what-
ever you want.” Most youth cited at least 4-5 different applications, which
Scratch could be used for including making games, Low Ridas, comics,
animations, music videos, short movies, and digital art. Although youth
could recall a great deal about how to create projects in Scratch, citing
specific commands and naming specific parts of the screen, most youth

Findings 15

were unaware that creating in Scratch would be considered “computer
programming.” In fact, over half of the youth were unable to define com-
puter programming.

If youth do not recognize that they are learning programming
through Scratch, what do youth believe that they are gaining from their ex-
perience? Youth report a wide range of connections to traditional subject
areas such as math, reading, science, and foreign language learning in ad-
dition to strong connections to the arts. The following excerpt is taken
from an interview with Arnold, a 14 year-old African-American boy with
limited Scratch experience, as he recounts his personal connection to
Scratch through his experience as an actor. Notably, he cites how drama
could be extended and reinforced in certain ways through Scratch.

Arnold: Well let me see…Well Scratch it really brings out my po-

tential and it actually brings out my acting experience.

Interviewer: How so?

Arnold: Well when you take the microphone, you can create your

own voice for your character. Like I love Arnold
Schwarzenegger. Yeah it just really brings out your po-
tential...Thinking of what you’re doing with acting you
can take it out of your mind and say like “in this picture
we want to like do action stunts like flips and stuff”, and
if you’re at school you’re like doing Romeo and Juliet.
You can make it more funny [in Scratch] by putting in
some dragons. You can make a dragon go up to a castle
and say “I came to rescue you.” … Then you put them all
in their places [in Scratch] and then once we do “Ac-
tion!” We all come in with our parts.

Although we don’t intend for all youth to become hacker-types as

a result of their experience in Scratch, the involvement in the design proc-
ess has awakened new possible career opportunities for some of the youth
– notably the teenage boys. As one member puts it, “…it teaches how to
play games and make games and it helps us figure out our future.” This
particular youth would now like to be a professional videogame designer,
to attend college at M.I.T., and perhaps someday design a program like
Scratch. He revels in his conversations with the professional programmers
of Scratch and thoughtfully comes up with suggestions for how to further
revise Scratch. It’s clear that experiences like the ones at the Computer
Clubhouse can have a considerable impact on the outlook and career aspi-
rations of young people. Clearly, this is an area worthy of further explora-

16 High Tech Programmers in Low-Income Communities: Creating a
Computer Culture in a Community Technology Center

tion if we intend for youth to enter the computer science pipeline through
informal avenues of education.

Discussion

A simple story of our efforts to seed a programming culture in the Com-
puter Clubhouse would focus on the Scratch technology, alone. But as
studies of technology change and innovation in organizations have shown,
the introduction of new technologies is a much more complex enterprise.
Researchers like Rogers (1995) have distinguished different phases from
adoption which describes the selection of a technology to diffusion that re-
fers to more wide-spread use and, finally, integration that illustrates accep-
tance in the community of practice. We are cognizant that our research
partnership with the original founders of the Computer Clubhouse model
gave us additional leverage in promoting new technology use not available
to others. Our results indicate that Scratch indeed was integrated into the
portfolio of design activities in this particular Computer Clubhouse, yet the
true test of diffusion and integration will come as we are releasing the
software to other Computer Clubhouses within the network.

The use of Oakes’s reform model, previously only applied to
schools, provided us with insights of the multiple dimensions at play in
getting Scratch integrated into Computer Clubhouse activities. As part of
our intervention, Scratch was never intended to be a shrink-wrapped pack-
age that was simply handed to members; rather, it was introduced in tan-
dem with normative and political changes at the Computer Clubhouse. The
introduction of both Scratch and undergraduate mentorship would not have
been possible without a change in the political realm at the Computer
Clubhouse. A formal partnership was forged between the university and
the Computer Clubhouse’s community host organization in order to gain
support from the organization’s infrastructure for these changes. By estab-
lishing goals, expectations, and communication protocols with the com-
munity organization, we were able to gain crucial buy-in on multiple lev-
els, from the director to the coordinators. Through these various changes, a
culture of programming began to emerge more in line with the initial vi-
sion of technology fluency aspect of the Computer Clubhouse model.

Meanwhile, we acknowledge the limitations to applying a school
framework to a non-school reform model, which differs on many levels.
For instance, normative and political structures in public schools are much
more institutionalized than in most CTCs. Also, in our current era of in-
creased accountability, pedagogy is strictly monitored in today’s schools

Next Steps 17

via national and state standards, while CTCs are usually left to their own
devices to determine their respective learning approaches. These glaring
differences may actually shed light on the unique advantages, challenges,
and opportunities CTCs face in promoting technological fluency. Perhaps
CTCs may serve as more fertile ground for promoting technological flu-
ency than schools.

As illustrated in the examples of Clubhouse work, multiple aspects
of media-rich production in informal settings provide youth access to tech-
nological fluency that empower them as designers in a setting where their
contributions are valued. Our approach to technological fluency in the
media rich Scratch software and in the programming projects in the Com-
puter Clubhouse was grounded in youth practices. Previous discussions
have cast this issue mostly in terms of access to digital equipment, talking
about the digital divide when, in fact, the focus should be on the participa-
tion gap (Jenkins, 2006) that exists in today’s society. It is here that our
work with Scratch production gathers particular relevance in light of the
inequitable access and participation of minority and low-income youth in
digital technologies. Technological fluency is not just about knowing how
to code, but also involves the personal expression as illustrated in the pre-
vious examples. These projects emphasize graphic, music, and video —
media that have been found to be at the core of technology interests for
youth. As we have argued, in the digital age, media literacy education
needs to foster both critical understanding and creative productions of new
media to encourage urban youth to be consumers, designers, and inventors
with new technologies (Peppler & Kafai, in press). Places like the Com-
puter Clubhouse can provide access to creative and critical media produc-
tion skills such as programming in low-income communities and fill a gap
not covered elsewhere.

Next Steps

As we move forward in introducing Scratch to other Computer Clubhouses
in the world, we acknowledge that the structures we have put into place are
unique to our location. Meanwhile, we contend that Scratch can flourish
in other Computer Clubhouses as well, given that normative and political
aspects are leveraged alongside this new programming environment. Cur-
rently, we are in the process of debuting Scratch to the entire network of
Computer Clubhouses through three approaches: presenting workshops at
training events for coordinators across the network; presenting workshops
and showcase events for Clubhouse members across the network; and es-

18 High Tech Programmers in Low-Income Communities: Creating a
Computer Culture in a Community Technology Center

tablishing a presence on the network’s intranet project website. Through
these efforts, we expect to develop new norms around programming and
supportive political structures for sustained collaboration among Club-
house members.

Acknowledgments

The work reported in this paper was supported by grants of the UCLA
Center for Community Partnerships and the National Science Foundation
(NSF-0325828) to the first author in collaboration with Mitchel Resnick’s
research group at the MIT Media Lab and by a dissertation grant from the
Spencer Foundation to the second author.

References

Cuban L (1986) Teachers and machines. Teachers College Press, New
York

Cuban L (2003) Underused and oversold and underused: Computers in the
Classroom. Harvard University Press, Cambridge

Flaxman E (1992) The mentoring relationship in action. The Institute for
Urban & Minority Education Briefs, 3. Teachers College, New
York

Guetzloe E (1997) The power of positive relationships: Mentoring pro-
grams in the school and community. Preventing School Failure,
41: 100-105

Jenkins H (2006) Media literacy—Who needs it? Available online at:
http://www.projectnml.org/yoyogi (accessed 9 August, 2006)

Kafai Y, Peppler K, Alavez M, Ruvalcaba O (2006) Seeds of a computer
culture: An archival analysis of programming artifacts from a
community technology center. In: Barab S, Hay K, Hickey D
(eds) Proceedings of the Seventh International Conference of the
Learning Sciences , pp 942-943

Kafai Y, Desai S, Peppler K, Chiu G, Moya, J (in press) Mentoring part-
nerships in a community technology center: A constructionist ap-
proach for fostering equitable service learning. Mentoring & Tu-
toring

Maloney J, Burd L, Kafai Y, Rusk N, Silverman B, Resnick M (2004)
Scratch: A sneak preview. Paper published in Creating, Connect-
ing and Collaborating through Computing, Proceedings for the

References 19

second International Conference of the Institute of Electrical and
Electronics Engineers

National Academy of Engineering (2002) Technically speaking: Why all
Americans need to know more about technology. National Acad-
emy Press, Washington DC

National Research Council (1999) Being fluent with information technol-
ogy. A report of the Committee on Information Technology Liter-
acy. National Academy Press, Washington DC

Oakes J (1992) Can tracking research inform practice? Technical, norma-
tive, and political considerations. Educational Researcher 21: 12-
21

Oakes J, Rogers J, Lipton M, Morrell E (2002) The social construction of
college access: Confronting the technical, cultural, and political
barriers to low-income students of color. In: Tierney, WG and
Haggedorn, LS (eds) Extending our reach: Strategies for increas-
ing access to college. State University of New York Press, Albany

Peppler K (in preparation) Creative bytes: Literacy and learning in the me-
dia arts practices of urban youth. Unpublished dissertation. UCLA,
Los Angeles

Peppler K, Kafai Y (in press) From SuperGoo to Scratch: Exploring crea-
tive digital media production in informal learning. Media, Learn-
ing, and Technology

Resnick M, Kafai Y, Maeda J (2003) ITR: A networked, media-rich pro-
gramming environment to enhance technological fluency at after-
school centers in economically disadvantaged communities. Pro-
posal funded for the National Science Foundation

Resnick M, Rusk N, Cooke S (1998) Computer Clubhouse: Technological
fluency in the inner city. In: Schon, D, Sanyal, B, and Mitchell,
W (eds) High technology and low-income communities. MIT
Press, Cambridge

Rogers ME (1995) Diffusion of innovation, 4th edn. The Free Press, New
York

Schon DA, Sanyal B, Mitchell WJ (1998) High technology and low-
income communities: Prospects for the positive use of advanced
information technology. The MIT Press, Cambridge

Schuler D, Day P (2004a) (eds) Shaping the network society: The new role
of civil society in cyberspace. The MIT Press, Cambridge

Schuler D, Day P (2004b) (eds) Community practice in the network soci-
ety: Local action / global interaction. Routledge, London

Sefton-Green J, Reiss V (1999) Multimedia literacies: developing the crea-
tive uses of new technology with young people. In: Sefton-Green J

20 High Tech Programmers in Low-Income Communities: Creating a
Computer Culture in a Community Technology Center

(ed) Young people, creativity and new technologies. Routledge,
London

Vasquez OA, Duran R (2000) La Clase Magica & El Club Proteo: Multi-
ple literacies in new community institutions. In: Gallegos M,
Hollingsworth S (eds) What counts as literacy: Challenging the
school standard (pp 173-189). Teacher's College Press, New York

Warschauer M (2004) Technology and social inclusion: Rethinking the
digital divide. The MIT Press, Cambridge

Zhao Y, Mishra P, Girod M (2000) A clubhouse is a clubhouse is a club-
house. Computers in Human Behavior 16: 287-300

