
Program Comprehension with Physical Computing
A Structure, Function, and Behavior Analysis of Think-Alouds with High School Students

Gayithri Jayathirtha
gayithri@upenn.edu

University of Pennsylvania
Philadelphia, PA

Yasmin B. Kafai
kafai@upenn.edu

University of Pennsylvania
Philadelphia, PA

ABSTRACT
Comprehending programs is key to learning programming. Previ-
ous studies highlight novices’ naive approaches to comprehend-
ing the structural, functional, and behavioral aspects of programs.
And yet, with the majority of them examining on-screen program-
ming environments, we barely know about program comprehen-
sion within physical computing—a common K-12 programming
context. In this study, we qualitatively analyzed think-aloud inter-
view videos of 22 high school students individually comprehending
a given text-based Arduino program while interacting with its cor-
responding functional physical artifact to answer two questions:
1) How do novices comprehend the given text-based Arduino pro-
gram? And, 2) What role does the physical artifact play in program
comprehension? We found that novices mostly approached the
program bottom-up, initially comprehending structural and later
functional aspects, along different granularities. The artifact pro-
vided two distinct modes of engagement, active and interactive,
that supported the program’s structural and functional compre-
hension. However, behavioral comprehension i.e. understanding
program execution leading to the observed outcome was inaccessi-
ble to many. Our findings extend program comprehension literature
in two ways: (a) it provides one of the very few accounts of high
school students’ code comprehension in a physical computing con-
text, and, (b) it highlights the mediating role of physical artifacts in
program comprehension. Further, they point directions for future
pedagogical and tool designs within physical computing to better
support students’ distributed program comprehension.

CCS CONCEPTS
• Applied computing→ Interactive learning environments.

KEYWORDS
physical computing, program comprehension, secondary education,
electronic textiles
ACM Reference Format:
Gayithri Jayathirtha and Yasmin B. Kafai. 2021. Program Comprehension
with Physical Computing: A Structure, Function, and Behavior Analysis
of Think-Alouds with High School Students. In 26th ACM Conference on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8214-4/21/06. . . $15.00
https://doi.org/10.1145/3430665.3456371

Innovation and Technology in Computer Science Education V. 1 (ITiCSE 2021),
June 26-July 1, 2021, Virtual Event, Germany. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3430665.3456371

1 INTRODUCTION
Physical computing is not only increasingly mediating our inter-
action with the world but is also making a foray into educational
spaces. Recently, they have been extensively adopted to introduce
computing to K-12 learners across formal and informal settings (e.g.,
[10, 15]). They provide microcontrollers, sensors, and actuators, and
allow learners to design, construct, and program electronic arti-
facts [2]. In addition, certain Arduino-based tools such as electronic
textile construction kits (hereafter e-textiles) integrate traditional
practices such as crafting and sewing with computing and sup-
port culturally responsive computing while realizing textile-based
artifacts [3]. Such an engagement with computation has further
diversified participants and products within computing, addressing
the disparity in participation across genders, races, and ethnicities
within the field to an extent [13, 14].

Program comprehension, the process of developing an under-
standing of computer programs in a given language, is considered
one of the key aspects of computing learning [23, 24]. Understand-
ing the structural, functional, and behavioral aspects of programs
is key for learners to not only reason but also to debug and write
successful programs (see [25] for a review). The recent collection
of a variety of learning activities to foster program comprehension
among learners is an evidence for its key role in programming
education [12]. However, studies exploring novices’ program com-
prehension mostly examine on-screen programming environments
with barely any considering the affordances and constraints of
physical computing environments for comprehending programs.
These studies draw predominantly from psychological learning the-
ories that view learning as an individual managing long and short
term memories (e.g, [24, 25]). This implies that the role of artifacts
within programming environments in supporting novices—central
to learning with physical computing—is understudied.

Although learner motivation and engagement are extensively
studied within physical computing, how these environments sup-
port learning programming is unexplored [11]. Knowledge about
circuits and fluency with associated representations such as cir-
cuit drawings can support program comprehension within physical
computing. An understanding of the functionality of different cir-
cuit components such as lights, motors, and sensors can provide a
context to understand programs. At the same time, these circuits
allow for embodied interactions such as pressing buttons or activat-
ing sensors and observing light patterns, different from interacting
with on-screen program text and artifacts. These will only broaden

https://doi.org/10.1145/3430665.3456371
https://doi.org/10.1145/3430665.3456371

the different knowledge bases and experiences that learners can
employ to comprehend programs.

Distributed intelligence [20] is an analytical framework that ac-
counts for the different elements in a learning environment and
allows examining implications of their designs on learning. Such
a theoretical framing helps us account for material interactions
and squarely fits our focus to examine program comprehension
within a physical computing context where meaning-making will
be distributed across the learner, programming language elements,
and physical artifact that embodies the circuit [20]. Such an investi-
gation will have lessons for pedagogical and tool design for novices.
Motivated by this, we conducted think-aloud interviews [8] with
22 high school students individually interacting with a given text-
based Arduino program and an accompanying functional e-textile
artifact. We qualitatively analyzed videos and annotated transcripts
to answer: 1) How do novices comprehend the given program? And,
2) What role does the physical artifact play in the process?

2 BACKGROUND
Prior studies articulate program comprehension as learners attend-
ing to three key aspects of programs: structural text, dynamic be-
havior, and function of programs [5, 25] (see Table 1). Structural
aspects include perceivable elements such as indentation, program
text and organization, and other syntactic features; behavioral as-
pects correspond to the abstract program dynamics i.e. the control
and data flow or how the programmed system transitions between
different states during program execution; and, functional aspects
correspond to the purpose or goal of the program. One can attend
to these aspects within programs across different granular levels:
a.) atomic: individual literals such as constants (e.g., HIGH/LOW,
INPUT/OUTPUT in case of Arduino) and statements (e.g., delay()
or loop()); b.) blocks: syntactic or logical groups of statements (e.g.,
chunks of code enclosed within conditional blocks); c.) relations:
connections between groups of statements or code segments (e.g.,
groups of conditional blocks); and, d.) macro: the overall program.

More recently, Schulte and colleagues [25] extended this model to
accommodate yet another key dimension that learners inevitably in-
clude while comprehending programs: prior knowledge stemming
from programming experiences or the knowledge of the application
domain, to name a few. For instance, studies have observed students
transferring their learning from one programming environment to
another, especially when learning in succession [18]. In addition to
programming knowledge, some studies have also highlighted the
role of English and mathematical semantics in shaping comprehen-
sion (e.g., [7, 22]). From conditional if statements to the assignment
operation, prior English and mathematical knowledge shape stu-
dents’ understanding of a range of programming elements. Further,
in the case of physical computing, domain knowledge of different
circuit elements and their functionalities may further contribute to
program comprehension (e.g., [6]). Overall, comprehending com-
puter programs demands learners to employ a wide variety of
resources while attending to different aspects of programs.

Yet another point to note, most of the above-mentioned studies
have examined code comprehension among learners with some
familiarity of the programming environment; very few have ex-
plored this process among novices within unfamiliar programming

Table 1: Schulte’s [24] BLOCK Model for program compre-
hension showing key aspects of programs (structure, behav-
ior, and function).

Duality Structure Behavior Function

Macro Overall struc-
ture of program
text

Algorithm of
the program

Overall goal of
the program in
context

Relations References be-
tween blocks

Sequence of
method calls or
blocks

Relating sub-
goals to the
goal

Blocks Syntactic or Se-
mantic Regions
of Interest

Operation of
the Region of
Interest

Function of the
block, or the
sub-goal

Atoms Language
elements

Operation of a
statement

Statement Func-
tion or Goal

environments. Nevertheless, such an understanding is key for a few
different reasons: we know from constructivist learning theories
that learners are not blank slates and that they come with some
prior knowledge that they apply to understand new learning materi-
als. This is evident in Ko and Uttl’s [16] study where undergraduate
learners’ program comprehension in an unfamiliar environment
was shaped by their prior programming and problem-solving expe-
riences. Further, a more recent study [29] noted distinct patterns
among post-secondary students in how they related the syntactic
and semantics aspects while switching programming environments.
Studying high school students’ preconceptions is important when
programming environments are inviting a broad variety of knowl-
edge bases and experiences to action, as in the case of physical
computing. However, such studies are rare although they can have
valuable insights for teachers and tool designers.

Given how complex program comprehension is, earlier studies
have noted significant challenges that novices face while doing so.
For instance, Lister and colleagues [19] observed that most novices
attended to the atomic aspects: individual literals or statements
while struggling to comprehend the program overall. This is similar
to novices’ bottom-up approach of attending to individual tokens
while comprehending programs [25]. The perceivable structural
aspects such as punctuation or program organizations are more
accessible for novices to grasp, while functional and behavioral
aspects might be more challenging due to their abstractness and
invisibility [5]. However, all the above-mentioned studies, simi-
lar to the field at large, have focused on on-screen programming
environments where all the clues are embedded within on-screen
program text and environment. With programming contexts signif-
icantly shaping opportunities for comprehending programs [25],
there is a need to separately explore program comprehension when
programming environments include tangible circuits in addition to
program text.

Situated theories of learning help us attend to contextual as-
pects more closely, providing a framework to study material in-
teractions within physical computing environments. For instance,
meaning-making process will be distributed across the given pro-
gram text, the circuitry embodied in the interactive physical artifact,
knowledge about circuits, and other associated representations [20].
Unlike traditional views of cognition and intelligence that places
thinking in an individual’s mind, distributed perspective brings to
the fore environmental aspects to account for “artifactual, physical,
symbolic, and social” structures across which intelligence will be
distributed [20] (p. 53). From labels on circuit components to pro-
gramming language tokens, symbols and signs embedded across
the space can invite learners to observe and interact with them
while understanding programs. On the other hand, a lack of such
frameworks may consider program comprehension as a tool-free
mental activity and discount the role of physical functional artifacts.

Physical computing construction kits can support programmers
comprehend programs in ways different from traditional on-screen
programs. A recent study [1] highlighted how middle school stu-
dents learned Arduino programs in relation to the voltage differ-
ences in digital signals. Similarly, Pennington [21] noted that the
physical aspects such cables and their connections served as visible
domain knowledge for engineers to interpret programs. Physical
computing construction kits are comparable to these engineering
devices in that the physical artifact reveals the circuitry being pro-
grammed. For example, in e-textiles, the different inputs, actuators,
the microcontroller, and the connections between them are laid
out in the artifact whose outcome is tied to the program [1, 3].
The visibility of the connections between circuit components, prior
understanding of their functionalities, and their ability to allow
for both observational and interactive engagement can potentially
scaffold program comprehension, which has been under-explored.
In this study, we took a step towards bridging this gap by examining
novices’ thinking and interactions as they comprehended programs
within a physical computing environment where the program text
was accompanied by a functional, physical artifact.

3 METHODOLOGY
3.1 Context and Participants
The study was conducted at a public charter high school located
in a large U.S. west coast city. Participants were in the Exploring
Computer Science class [9], offered to students with no prior for-
mal computer science experience. More specifically, 17 of the 22
interviewees confirmed that they had no programming experience
outside of this unit while 5 of them acknowledged some program-
ming experience in after-school clubs or as a part of middle school
coursework. As a part of this study, we interviewed 22 consented
students (14-18 years; 11 male, 11 female; 8 identified as White, 6
Latino/Hispanic, 6 Asian, and 2 African-American) as identified
by the teacher two weeks before an Arduino unit within the cur-
riculum. While all the students had HTML scripting and Scratch
programming experiences as a part of the unit, this was their first
time interacting with Arduino programs.

3.2 Data Collection and Analysis
The first author conducted and video-recorded think-aloud inter-
views of each of the 22 students [8] where every student was invited
to reason a 56-line Arduino program printed on a paper (the en-
tire program was visible at once) accompanied with an e-textile
functional artifact (see Figure 1). The program included traditional
Arduino sections: global variable declarations, a setup(), and a loop()
with four conditional blocks (each causing a light pattern in re-
sponse to one of the four two-button press configurations as ex-
pressed by logical AND statements). It had meaningful variable
names, indentation, and structure, similar to plan-like programs
[26] to keep the program accessible to novices. Given that the stu-
dents were new to text-based Arduino programs, we took care not
to overwhelm novices with multiple programs. Interviewees were
initially presented with non-powered physical artifact in addition
to the printed program, and asked questions such as “how is the
code related to the artifact?” and “do any parts of the code stand
out?” Then, the artifact was powered with a battery and students
were encouraged to interact with the same and think aloud as they
reasoned the given program. Unlike the traditional program com-
prehension interview protocols, We provided a functional artifact
along with the code to study the role of artifacts in this process.

Figure 1: Annotated Interview Artifacts: The Arduino pro-
gram printed on paper and the physical e-textile project

Guided by the distributed intelligence lens [20], the first au-
thor transcribed and annotated each video with student utterances,
gestures, and interactions to capture students’ meaning-making
across the given artifact and the program text. These transcripts
and student drawings were qualitatively analyzed in two phases,
initial deductive analysis followed by inductive analysis to generate
themes [4]. Every program-related instance in each transcript was
deductively coded to recognize the structure, function, and behav-
ior, and the level of detail [24]. For instance, students pointing to
the visual blocks of code without delving into its role or dynamic
behavior was coded as structural, stating the goals of individual
blocks as functional, and discussing details by drawing on the data
or control flow as behavioral. Further, the nature of interaction with
the physical artifact, if any, was noted with each (active seeing or
noticing, or interactive engagement). The generated codebook with

definitions and examples was shared with another researcher for
validation and feedback. A codebook with revised definitions and
more examples was applied to 3 of the annotated transcripts (10%
of the data) by the first author and yet another researcher indepen-
dently. Upon reaching close to 90% agreement, disagreements were
discussed and the codebook was revised to include clarifications,
and the first author coded the rest of the 19 annotated transcripts.
This led to a total of 119 episodes of students attending to one of
the three aspects of programs across different granularities and
modes of engagement with the physical artifact (blue and orange
circles in Figure 2). Further, descriptive notes were taken to capture
any prior knowledge whenever visible and these were inductively
analyzed by the first author independently and included to explain
the patterns in the findings appropriately.

4 FINDINGS
We observed patterns similar to traditional program comprehension
activities: close to two-thirds of the students (14 out of 22) attended
to the structural and functional aspects of the program, and fewer
(8 out of 22) extended to reason the program run-time behavior
(see Figure 2). Most of them initially focused on the atomic details,
either the individual literals or statements, and only later attended
to program blocks and the overall program (arrows in Figure 2).
They constantly drew from their prior programming experiences
and contextual clues from the program and the artifact to further
interpret larger segments of the program.

Throughout the process of comprehending the program, the
physical artifact afforded two qualitatively distinct modes for en-
gagement: a.) active engagement in the form of observing different
components, inferring functionality and tracing the physical con-
nections on the artifact (blue dots in Figure 2), and, b.) interactional
engagement involving button presses and relating the light patterns
to the program text (orange dots in Figure 2). Different components
of the artifact allowed students to employ their prior understanding
of circuit elements and to draw from the broad variety of contextual
and visual clues. While active engagement supported structural
and functional understanding of atomic program components, iter-
ative interactive engagement with the artifact furthered functional
understanding at the block, relational, and macro level. Since we
found that the program comprehension process was constantly
informed by the engagement with the artifact, we will present our
findings about program comprehension across structure, function,
and behavior while highlighting the role of the physical artifact at
each level. Furthermore, we will also share details regarding other
resources that students drew from whenever applicable.

4.1 Understanding by Seeing: Structural
Comprehension Mediated by Active
Engagement

During the initial phase of comprehension, a majority of the stu-
dents (21 out of 22) attended to perceivable structural aspects, ex-
amining atomic program literals. Very few (3 of 22) commented
on either the relational or macro levels (the Structure column in
Figure 2). An active engagement with the artifact while looking,
observing, and tracing physical connections provided a particular

Figure 2: The visualization of program comprehension
episodes across program aspects and granularity while ac-
tively (blue) and interactively (orange) engaging with the ar-
tifact; the arrows indicate the order of students’ attention.

context for students to understand certain literals. Students fur-
ther drew on a variety of other visual clues and employed their
prior programming experiences to explain certain other program
structures. However, structures unrelated to circuit elements or to
students’ prior experiences were left unattended.

The visibility of different components and the interconnections
between them in the physical artifact allowed students to map key-
words and variable names to corresponding artifact elements. Based
on their observations of different circuit components, students con-
nected variable names such as button1, button2, button1Status,
and button2Status onto the corresponding perceivable elements
i.e. buttons on the artifact. Further, some students (9 of 22) traced
the connections between the microcontroller and the lights, and
concluded that the microcontroller was sending HIGH and LOW
signals to affect brightness of lights, pointing to the HIGH/LOW in
the program. A few other students associated the buttons and lights
to INPUT and OUTPUT keywords in the program. Further, the
spatial positioning of lights along the inner and the outer rims of
the shield artifact led some students (6 of 22) to relate the variables
inner and outer to them. However, not all visual clues led novices to
better understand the program. For instance, some (3 of 22) naively
thought of the six lights as connected to the six variables in the pro-
gram and a few others affiliated HIGH and LOW to the positioning
of lights along the higher and lower rims of the circular artifact (see
Figure 1, right). Nevertheless, a constant quest for visual clues to
map different aspects of the physical artifact with the perceivable
program elements was a common first step towards comprehending
the program.

Furthermore, program elements such as braces and indentation
visually structured the program as six chunks (see Figure 1, left).
Some students (5 out of 22) recruited their prior Scratch program-
ming experience and made a one-to-one correspondence between
program chunks and individual lights in the artifact—similar to
how sprites relate to code blocks in Scratch. For instance, Chad (a
student) thought of each program chunk as located “inside of the
[light],” pointing to them in the artifact. Similarly, Gala explained
that the “little lights” would “read” these chunks to understand
if they should “turn on, or how bright they should be.” The very
formatting of text led a few students (4 out of 22) to relate the

given program to HTML scripts, yet another programming experi-
ence that they had. For instance, Gala recollected HTML as writing
scripts so that “if you click your mouse over something, [the com-
puter] would turn a different color or [the computer] would take
you to a different page” and saw that the given program “kinda
looked like [that].” But, a significant pattern was an overall lack of
attention to global variables or the setup() module at the beginning
of the program. Students selectively attended to certain structural
aspects, mostly limited to familiar and perceivable literals or chunks
of code, while disregarding other code structures which did not
directly map onto the circuit elements, or their prior experiences
and knowledge.

4.2 Understanding by Doing: Functional
Understanding Mediated by Interactive
Engagement

Unlike the structural understanding of the program, most of the
functional understanding was mediated by interacting with the
physical artifact. A majority of the students (17 out of 22; right-
most column in Figure 2) comprehended program functionality
across different granular levels—from individual statements to the
overall program—by not only observing the given artifact but also
closely interacting with it. While observing artifacts afforded stu-
dents opportunities to comprehend the functionality at an atomic
level, interacting with the artifact further allowed comprehending
specific program blocks, the relationship between blocks, and their
articulation of the overall goal of the program.

Paying close attention to the different circuit components on
the artifact allowed students to predict the functionality of certain
individual program statements. Noticing buttons and lights in the
artifact supported students’ meaning-making of tokens such as
INPUT/OUTPUT and HIGH/LOW, and literals such as buttonStatus
within the program. Further, close to half of the students not only
recognized buttons as inputs and lights as outputs, they connected
the two possible states of these devices (on or off) to the program
literals HIGH and LOW. This helped half of the students (11 of
22) further explain the functionality of certain statements. For ex-
ample, Gala understood HIGH and LOW constructs as related to
the brightness of lights and applied this to extend her explanation
initially to digitalWrite statements and later to a conditional block.
“Since they are all LOW, that means the lights are not on,” she said
pointing to the digitalWrite statements with LOW as parameters in
the last conditional block. This further expanded her understand-
ing to explain different conditional statements, evaluating logical
expressions in terms of the statuses of the two buttons.

In addition to observing the physical artifact, closely interacting
with it further provided opportunities for novices to understand
the functionality of certain blocks. One obvious and common exam-
ple was how students extended their functional understanding of
conditional statements as they pressed buttons and observed par-
ticular light patterns. For instance, Adam explained the conditional
statement as “checking” the buttons for particular positions (on
or off) and accordingly causing light patterns on the artifact. He
derived this explanation based on his repeated interaction with the
buttons (see Figure 3), pressing to cause different configurations
while observing the changing light patterns on the artifact. Upon

explaining the individual functionality of each of the four condi-
tional blocks, Adam even described the variable declarations and
the setup() sections as “generic,” implying they are not related with
the button presses unlike the rest of the program. In sum, iterative
interaction with the artifact furthered functional comprehension
to explore beyond the atomic level details of the program.

Figure 3: Adam interacting the buttons, observing the light
patterns, and connecting them to explain the functional as-
pect of conditional blocks of the program.

4.3 The Invisibility Issue: The Limited Role of
the Artifact in Supporting Behavioral
Understanding

Unlike the structural and functional program aspects that were
mediated by the artifact, the invisibility of the underlying dynamics
led to only a small proportion (8 out of 22) of the students pointing
at program run-time behavior. Most of their explanations were
limited to individual statements while a few (3 out of 8) extended
them to describe operations of program blocks and relationships
between them (see the Behavior column in Figure 2). For the most
part, the abstract run-time program behavior i.e. comprehending
data and control flow was inaccessible to the novices.

Among students who went far enough to reason behavior of
certain statements, they did so by drawing on their prior knowledge
from English and Scratch programming language semantics. Even
here, a few statements and tokens were more accessible to novices
than others. For instance, Bash articulated the behavior of digital-
Write() statements as the computer “digitally writing things” to the
lights while others assumed it as sending directions to the lights.
Similarly, Chad translated the loop() statement as “constantly check-
ing the buttons” while others assumed similar behaviors without
explicit mentions. Such support from the English language seman-
tics was also evident in how four of the seven students explained
if-else statements in controlling the execution flow of the program
as similar to the “if ” and “else” in the English language. Further,
students explained delay() as causing “the lights to wait” to make
different patterns, attributing their explanation to the behavior of
the wait block in Scratch programs.

However, extended interaction with the functional artifact led a
few students (3 out of 8) go beyond individual statements to reason
chunks or blocks of code. Nyla was one such rare case, where
she constantly interacted with the artifact to understand the given
program beyond functional descriptions to trace program execution.
Similar to Adam, she repeatedly interacted with the artifact but
paying attention to the specific changes in the data and control flow.
She said she wanted to “figure out which one is button1, which one

is button2; and, which inner [variable] corresponds to which light,”
clearly recognizing the mapping between different parts of the
code and the circuit. She further explained the working of different
conditional blocks in the program, speaking from the perspective
of the computer and establishing how the computer understands
HIGH and LOW in the program based on the statement in which
it is used. Nyla recognized that HIGH and LOW in the case of
buttons implied being pressed or not while in the case of lights
implied turning on and off respectively. These combined with her
understanding of the if statement (as drawn from Scratch blocks)
got her to explain the behavior of one of the conditional blocks,
and of else-if statements as mutually exclusive blocks of programs
that will be executed depending on the “status of the buttons.”
While the contextual information in addition to interacting with
the artifact supported a few students’ understanding of program’s
behavior, it was far fewer compared to many more students who
generated functional or structural explanations, pointing to the
invisible nature of these ideas and a need to intentionally integrate
them in pedagogy.

5 DISCUSSION
Novices’ program comprehension was clearly distributed across
materials, space, and time in the form of program text, the physical
circuitry, and their prior programming and natural language experi-
ences. Their limited success with reasoning program behavior calls
for explicit integration of notional machines within programming
education [27], while the distributed nature of program comprehen-
sion invites careful design of tools, environments, and programming
languages for novices.

5.1 Program Behavior in Programming
Pedagogy

Novices demonstrated an ability to comprehend the structural and
the functional aspects of the program by drawing clues and sup-
ports from a variety of resources. And yet, similar to observations
in prior studies [5, 6, 25], the invisible abstract program behavior
was hard to comprehend. This points to a need to explicitly sup-
port novices in computing classes to understand run-time program
behavior. Guiding students to understand program dynamics at
appropriate levels of abstractions, also called notional machines
[7], helps develop a robust understanding of program execution
and build their capacity to comprehend, debug, and write programs
successfully. This matches with Sorva’s [27] recent call for pro-
gramming pedagogy to integrate notional machines to specifically
support novices to understand the abstract program behavior. Find-
ings above allude to a variety of probable notional machines based
on the different resources that students recruited while reasoning
the program, drawing analogies from prior programming experi-
ences and contextual details, to mention a few. Such a design and
analysis will also be one of the first accounts of the nature and role
of notional machines within physical computing [17].

5.2 Distributed Intelligence in Tool and
Language Design

The distributed nature of program comprehension points to cer-
tain directions for future tool design. While observing the artifact

allowed for structural mappings between programming language
elements and the context, interacting with a artifact allowed stu-
dents to infer functional meanings for different parts of the program.
Though learners do not generate a functional artifact at the begin-
ning of their learning trajectory, presenting some representation
of artifacts along with program text early on has the potential to
support program comprehension. Adopting Pea’s [20] framework
and viewing program comprehension as a distributed activity can
refocus tool design to embed scaffolds and “intelligence” in tools
and environments for novices. Programming environments and tool
designers can provide interactive representations of functional arti-
facts that map programming constructs to observable outcomes and
support distributed meaning-making within physical computing.

Furthermore, the variety of meanings that students activated,
drawn from contextual to prior programming and natural language
experiences, illuminate the active role of programming languages
in shaping novices’ meaning-making. This was visible in the way
certain tokens such as delay(), loop(), and even meaningful variable
names rendered to novice program comprehension. Programming
language elements that had close mappings to the interactive arti-
fact, such as INPUT/OUTPUT corresponding to buttons and lights,
HIGH/LOW to light brightness, and delay() to observed light pat-
terns, were more accessible to novices. Further, constructs such
as if-else conditional statements invited semantics from prior pro-
gramming and natural language experiences to comprehend the
given program. On the other hand, tokens such as pinMode() and
int, were less accessible. All these can be further considered while
designing languages for physical computing for novices.

6 CONCLUSION
Although this analysis revealed certain patterns in high school
students’ program comprehension within physical computing, it
was limited in a few ways. Students were provided an opportunity
to comprehend only one program, restricting the programming
language constructs that could be examined and also binding the
context to this particular artifact design with a very specific circuit
layout. Further, although some may argue that 22 students is a good
enough sample size for qualitative analysis to have overlapping and
saturated themes [28], future studies may repeat this process for
larger sample sizes and with a variety of programs to verify results.

With physical computing becoming more prevalent in K-12 in-
troductory computing classrooms, this study indicates how these
programming environments support novices’ code comprehension.
While the above-reported findings reaffirm observations in the
field, it adds another dimension by highlighting the role of physical
artifacts in providing a context and in mediating program com-
prehension among novices. And, it illuminated its limitation in
affording opportunities to reason program behavior, calling for
intentional pedagogical and tool design to make transparent the
invisible program execution dynamics for novices.

ACKNOWLEDGMENTS
We would like to thank Luis Morales-Navarro and Katie Cunning-
ham for help with data analysis, anonymous reviewers for their
feedback, and participating teacher and students. This project was
supported by National Science Foundation (#1742140).

REFERENCES
[1] Doug Ball and Colby Tofel-Grehl. 2020. Potentially Electric: An E-Textiles Project

as a Model for Teaching Electric Potential. The Physics Teacher 58, 1 (2020),
48–51.

[2] Paulo Blikstein. 2013. Gears of our childhood: constructionist toolkits, robotics,
and physical computing, past and future. In Proceedings of the 12th international
conference on interaction design and children. 173–182.

[3] Leah Buechley, Kylie Peppler, Michael Eisenberg, and Yasmin Kafai. 2013. Textile
Messages: Dispatches from the World of E-Textiles and Education. New Literacies
and Digital Epistemologies. Volume 62. ERIC.

[4] John W Creswell and Cheryl N Poth. 2016. Qualitative inquiry and research
design: Choosing among five approaches. Sage publications.

[5] Kathryn Cunningham, Mark Guzdial, and Barbara Ericson. 2020. Using the
Structure Behavior Function framework to understand learning of computer
programming. (2020). (Manuscript submitted for publication).

[6] Kayla DesPortes and Betsy DiSalvo. 2019. Trials and Tribulations of Novices
Working with the Arduino. In Proceedings of the 2019 ACM Conference on Inter-
national Computing Education Research. 219–227.

[7] Benedict du Boulay, Tim O’Shea, and John Monk. 1981. The black box inside the
glass box: presenting computing concepts to novices. International Journal of
Man-Machine Studies 14, 3 (1981), 237–249.

[8] Anders Ericsson and Herbert A Simon. 1998. How to study thinking in everyday
life: Contrasting think-aloud protocols with descriptions and explanations of
thinking. Mind, Culture, and Activity 5, 3 (1998), 178–186.

[9] Joanna Goode, Gail Chapman, and Jane Margolis. 2012. Beyond curriculum: the
exploring computer science program. ACM Inroads 3, 2 (2012), 47–53.

[10] Steve Hodges, Sue Sentance, Joe Finney, and Thomas Ball. 2020. Physical com-
puting: A key element of modern computer science education. Computer 53, 4
(2020), 20–30.

[11] Michael Horn and Marina Bers. 2019. Tangible computing. The Cambridge
handbook of computing education research 1 (2019), 663–678.

[12] Cruz Izu, Carsten Schulte, Ashish Aggarwal, Quintin Cutts, Rodrigo Duran,
Mirela Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio Mirolo,
et al. 2019. Fostering Program Comprehension in Novice Programmers-Learning
Activities and Learning Trajectories. In Proceedings of the Working Group Reports
on Innovation and Technology in Computer Science Education. 27–52.

[13] Gayithri Jayathirtha and Yasmin B. Kafai. 2019. Electronic textiles in computer
science education: a synthesis of efforts to broaden participation, increase interest,
and deepen learning. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. 713–719.

[14] Yasmin Kafai, Kristin Searle, Crîstobal Martinez, and Bryan Brayboy. 2014. Ethno-
computing with electronic textiles: Culturally responsive open design to broaden
participation in computing in American Indian youth and communities. In Pro-
ceedings of the 45th ACM technical symposium on Computer science education.

241–246.
[15] Yasmin B Kafai, Deborah A Fields, Debora A Lui, Justice T Walker, Mia S Shaw,

Gayithri Jayathirtha, Tomoko M Nakajima, Joanna Goode, and Michael T Giang.
2019. Stitching the Loop with Electronic Textiles: Promoting Equity in High
School Students’ Competencies and Perceptions of Computer Science. In Pro-
ceedings of the 50th ACM Technical Symposium on Computer Science Education.
1176–1182.

[16] Andrew Jensen Ko and Bob Uttl. 2003. Individual differences in program compre-
hension strategies in unfamiliar programming systems. In 11th IEEE International
Workshop on Program Comprehension, 2003. IEEE, 175–184.

[17] Shriram Krishnamurthi and Kathi Fisler. 2019. Programming paradigms and
beyond. The Cambridge Handbook of Computing Education Research 37 (2019).

[18] Colleen M Lewis. 2010. How programming environment shapes perception,
learning and goals: logo vs. scratch. In Proceedings of the 41st ACM technical
symposium on Computer science education. 346–350.

[19] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L Whalley, and Chris-
tine Prasad. 2006. Not seeing the forest for the trees: novice programmers and
the SOLO taxonomy. ACM SIGCSE Bulletin 38, 3 (2006), 118–122.

[20] Roy D Pea. 1993. Practices of distributed intelligence and designs for education.
Distributed cognitions: Psychological and educational considerations 11 (1993),
47–87.

[21] Nancy Pennington. 1987. Comprehension strategies in programming. In Empirical
studies of programmers: second workshop. Ablex Publishing Corp., 100–113.

[22] Yizhou Qian and James D Lehman. 2016. Correlates of Success in Introductory
Programming: A Study with Middle School Students. Journal of Education and
Learning 5, 2 (2016), 73–83.

[23] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: A review and discussion. Computer science education 13,
2 (2003), 137–172.

[24] Carsten Schulte. 2008. Block Model: an educational model of program compre-
hension as a tool for a scholarly approach to teaching. In Proceedings of the Fourth
international Workshop on Computing Education Research. 149–160.

[25] Carsten Schulte, Tony Clear, Ahmad Taherkhani, Teresa Busjahn, and James H
Paterson. 2010. An introduction to program comprehension for computer science
educators. In Proceedings of the 2010 ITiCSE working group reports. 65–86.

[26] Elliot Soloway and Kate Ehrlich. 1984. Empirical studies of programming knowl-
edge. IEEE Transactions on software engineering 5 (1984), 595–609.

[27] Juha Sorva. 2020. Chapter 14: Naive Conceptions of Novice Programmers. In
Computer Science in K-12: A A to Z handbook on teaching programming, Suchi
Grover (Ed.). Edfinity, Palo Alto, CA, USA, 143–157.

[28] Keith Trigwell. 2006. Phenomenography: An approach to research into geography
education. Journal of geography in higher education 30, 2 (2006), 367–372.

[29] Ethel Tshukudu and Quintin Cutts. 2020. Understanding Conceptual Transfer
for Students Learning New Programming Languages. In Proceedings of the 2020
ACM Conference on International Computing Education Research. 227–237.

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Context and Participants
	3.2 Data Collection and Analysis

	4 Findings
	4.1 Understanding by Seeing: Structural Comprehension Mediated by Active Engagement
	4.2 Understanding by Doing: Functional Understanding Mediated by Interactive Engagement
	4.3 The Invisibility Issue: The Limited Role of the Artifact in Supporting Behavioral Understanding

	5 Discussion
	5.1 Program Behavior in Programming Pedagogy
	5.2 Distributed Intelligence in Tool and Language Design

	6 Conclusion
	Acknowledgments
	References

