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Abstract: Much attention has focused on student learning while making physical computational 

artifacts such as robots or electronic textiles, but little is known about how students engage with 

the hardware and software debugging issues that often arise. In order to better understand 

students’ debugging strategies and practices, we conducted and video-recorded eight think-

aloud sessions (~45 minutes each) of high school student pairs debugging electronic textiles 

projects with researcher-designed programming and circuitry/crafting bugs. We analyzed each 

video to understand pairs’ debugging strategies and practices in navigating the multi-

representational problem space. Our findings reveal the importance of employing system-level 

strategies while debugging physical computing systems, and of coordinating between various 

components of physical computing systems, for instance between the physical artifact, 

representations on paper, and the onscreen programming environment. We discuss the 

implications of our findings for future research and designing instruction and tools for learning 

with and debugging physical computing systems.  

 

Keywords: Debugging, think-aloud protocol, electronic textiles, high school computing 

learning, physical computing. 

Introduction 
The push to bring computing courses into K-12 education (Passey, 2017) introduces students to key computational 

thinking concepts and practices. Much of student learning takes place in the context of designing screen-based 

applications such as games, animations or stories (Kafai & Burke, 2014), but now also extends to designing 

physical computing artifacts such as robots (Blikstein, 2013) or electronic textiles (Buechley, Peppler, Eisenberg 

& Kafai, 2013). However, most of the attention has been paid to how students learn the necessary computational 

skills to complete their artifact creation with relatively little attention paid to the equally important debugging 

skills needed to address the inevitable problems or bugs that arise. Debugging can be defined as the process of 

“finding out exactly where the error is and how to fix it” within computing programs (McCauley et al., 2008, p. 

68). Learning debugging is a key computational practice which involves several specific steps such as isolating 

the problem, hypothesizing causes, generating and implementing a solution, and running verifications (Gugerty 

& Olson, 1986; Katz & Anderson, 1987). 

Because most of the studies examining debugging were conducted in the 1980s with undergraduate and 

graduate students (McCauley et al., 2008), very little is known about how their findings will extend to K-12 

students and their struggles, especially with the more recently developed physical computing systems (Booth, 

Stumpf, Bird & Jones, 2016). Electronic textiles (e-textiles) is one such physical construction kit designed for 

learners to sew microcontrollers and other electronic components onto fabric substrates using conductive thread 

and program them (Buechley et al., 2013). Debugging e-textile artifacts requires not only fixing problems related 

to syntax and semantics of the programming language but also addressing circuitry issues, for instance with 

polarity or short circuits, on multi-surfaced physical artifacts (Jayathirtha, Fields & Kafai, 2018). While a few 

recent efforts have begun examining adult learners debugging physical computing systems (Booth et al., 2016; 

DesPortes & DiSalvo, 2019), less is known about how high school students’ approach and deal with challenges 

in debugging their artifacts—critical knowledge for both teachers and students as more of these type of 

programming activities are now entering K-12 computer science classrooms (Kafai et al., 2019). 

In this paper, we move from busy classroom settings into more constrained think-aloud sessions 

(Ericsson & Simon, 1998) to better understand students’ debugging of electronic textiles. While think-aloud 

protocols often focus on individual learners, we decided to engage pairs of students to facilitate students’ 

verbalization of strategies in a more authentic fashion but also to leverage students’ prior collaborative classroom 

experiences (Fields, Jayathirtha & Kafai, 2019). Furthermore, the multi-modal nature of physical computing 

systems which require learners to interact with an array of physical and electronic materials, computer screen and 
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artifacts was video-recorded. We conducted eight think-aloud sessions, each approximately 45-minutes long, as 

pairs of high school students debugged e-textiles projects with multiple (researcher-designed) problems involving 

crafting, circuit and programming. We then undertook systematic video analysis (Derry et al., 2010) to answer 

the following questions: (1) What debugging strategies do novice high school students adopt to identify and 

address the problems in the e-textiles projects? And, (2) How do they navigate the multi-representational problem 

spaces as they debugged these projects? In the discussion, we address what we learned about students’ successes 

and struggles in finding and fixing problems, and outline recommendations for further research and design efforts, 

and pedagogical interventions. 

Background 
Debugging is key to realizing any computational artifact and requires learners to reason and exercise specific 

problem-solving strategies (McCauley et al., 2008). Prior studies examining on-screen debugging which have 

focused predominantly on college and graduate students highlight the role of learners’ prior knowledge to work 

through different problem-solving stages such as fault isolation, hypothesis and solution generation, testing, and 

verification (Gugerty & Olson, 1986; Katz & Anderson, 1987). While debugging problems, these students were 

observed pursuing specific strategies: forward reasoning (i.e., bug search starting from the given representations 

such as code while comprehending an unfamiliar problem space), and backward reasoning (i.e., bug search 

starting from the observation of incorrect behavior based on compiler feedback once sufficiently familiar with the 

problem) (Katz & Anderson, 1987). Furthermore, novice and expert adult debuggers pursued qualitatively 

different approaches to generating hypotheses: experts adopted breadth-first approaches as they hypothesized 

more exhaustively and tested before generating solutions, while novices took depth-first approaches as they 

hypothesized about fewer causes before implementing a fix (Vessey, 1985). Gugerty and Olson (1986) also found 

that expert graduate students tended to test their hypotheses and solutions more often and earlier during debugging 

compared to their novice counterparts. In sum, expert and novice adults tend to use different strategies and 

reasoning processes while debugging traditional on-screen computer programs. 

  Nevertheless, only a few studies have closely examined debugging within physical computing systems. 

These have revealed undergraduate novices’ difficulties in programming Arduino-based artifacts: a majority of 

debugging issues related to programming while the remaining were distributed between circuitry and the 

intersection of circuit and programming (Booth et al., 2016; DesPortes & DiSalvo, 2019). A classroom study 

examining high school students debugging Arduino-based e-textile artifacts noted an almost equal distribution of 

challenges across circuitry, programming, crafting and design (Jayathirtha et al., 2018), a difference that can be 

attributed to e-textiles circuitry components such as uninsulated conductive thread, which is more prone to short 

circuits. While these studies examined debugging while making artifacts, one study presented high school students 

with pre-designed buggy projects and examined approaches and success rates in solving them (Fields, Searle & 

Kafai, 2016). This approach of presenting e-textile projects embedded with problems became the foundation for 

our proposed think-aloud study to examine in a more systematic fashion how student pairs iterate through different 

phases of debugging—fault isolation, hypotheses and solution generation, and testing and verifications—-with 

the purpose of better understanding high school students’ debugging trajectories and challenges. 

Moreover, we wanted to take a more careful look at how novices navigated the complex system of tools 

and representations while debugging, yet another key aspect of working with physical computing systems (e.g., 

Kafai, Fields & Searle, 2014; Searle, Litts & Kafai, 2018). From circuit drawings to code within a programming 

environment to the programmed physical artifacts, students need to draw on different kinds of information across 

these representations as they debug. These various representations and tools, along with the learners’ prior 

experiences, can be seen as a distributed system in which learners “recognize, recall, pattern match, check for 

consistency across modality, construct and reconstruct” representations (Hutchins, 1995, p. 284) as they debug. 

Prior research on related physical computing activities indicates that adult makers often navigate multiple 

representations during the process of planning, designing and making artifacts (Tucker-Raymond, Gravel, 

Kohberger & Browne, 2017). Further, with collaborative work, coordination with others is another aspect of the 

distributed system of e-textiles where prior research has shown that students often distribute work in e-textiles 

based on perceived expertise in circuitry and coding (Buchholz et al., 2014; Searle et al., 2018). Thus, our research 

focused on understanding students’ strategies and practices as they collaboratively debugged e-textiles projects 

in order to inform efforts to design supportive tools and pedagogical scaffolds.  

Methods 

Participants 
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Our study took place in an introductory computer science high school classroom within a U.S. charter school in a 

large west coast school district that accepts all geographically local students (55% of students from ethnic groups 

underrepresented in computing and 54% from economically disadvantaged families). The class was implementing 

the e-textiles unit (Kafai et al., 2019) of the Exploring Computer Science curriculum in which students make four 

projects, exploring textile crafts, circuitry concepts such as electric polarity, and computational concepts such as 

sequence, conditionals, digital and analog inputs and outputs. Students were between their third and fourth 

projects in the curriculum when each pair, as established during the collaborative third project, were invited to 

think-aloud and debug a researcher-designed buggy project (what we call a DebugIt) within a 55-minute class 

period. We created four pairs of DebugIts (8 in total) and had a total of 14 high school students participate, eight 

males and six females with one of the pairs debugging two projects, as planned by the teacher. 

Data collection  
We videotaped all eight think-aloud debugging sessions, each roughly 45 minutes long. Each pair was given a 

researcher-designed DebugIt, printed code, an intention statement (how the project should work after debugging), 

a “teacher approved” circuit drawing (i.e., with no errors), a computer with programming environment, sewing 

supplies, and paper (see Figure 1, left). The four DebugIt designs were aesthetically different but had similar bugs, 

allowing for comparisons of practices and strategies across student pairs. Two of the four DebugIt designs were 

based on the third (mural) project in the e-textiles unit with two digital switches as inputs and LED lights as digital 

outputs; the other two DebugIt designs were based on the fourth (human sensor) project, with a hand-crafted 

analog “squeeze” sensor and LED lights as digital outputs. Each DebugIt had exactly three circuitry and three 

programming bugs, with different physical layouts but the students did not know the number of bugs. The crafted 

circuit on the DebugIt had bugs such as loose connections causing short circuits and reverse polarity (see Figure 

1, right) while the “teacher approved” circuit drawing had the circuit layout, polarity of the LEDs and 

microcontroller pin numbers, all as intended in a functional artifact. The code, approximately 30 lines long, had 

errors such as missing initialization, incorrect logical expressions and mismatched variables, based on challenges 

novices face while making Arduino-based projects (Booth et al., 2016; Jayathirtha et al., 2018).  

   
Figure 1. A snapshot of a pair in action depicting different tools and representations that were available to debug 

(left); a visualization of the given buggy artifact with three circuitry mistakes as labeled (right).  
 

We asked all pairs to think aloud as they debugged the DebugIts and video-recorded them. The researcher 

regularly probed students to verbalize their thoughts as per the think-aloud protocol (Ericsson & Simon, 1998).  

Data analysis 
All eight videos were systematically and iteratively analyzed in a deductive fashion (Derry et al., 2010), guided 

by our two research questions. We adopted a distributed cognition lens throughout our analysis and treated the 

whole system—learners, tools and representations—as the unit of analysis (Hutchins, 1995) instead of focusing 

on individuals. As a first step, each video was indexed and sliced into 5-minute segments and details regarding 

the different interactions were noted. We synthesized all the notes across segments to create descriptive narratives 

and intermediate visualizations for each pair, as described by Derry and colleagues (2010). These intermediate 

representations comprising of annotated screen captures and transcripts of the videos enabled discussions among 

researchers to observe patterns and generate codes. Initially, one of the videos was watched together by all three 

authors to iteratively generate codes, narrative descriptions and intermediate representations until a consensus 

about different codes was reached. In the end, each 5-minute segment was coded to capture phases of problem-

solving, different strategies and reasoning, interactions with tools and representations, and nature of collaboration 

within each segment. These were compared with the coding and descriptive results produced by another researcher 

colleague to ensure consistency. Upon confirming a match of overall descriptions, the remaining seven videos 

ICLS 2020 Proceedings 1049 © ISLS



were watched and analyzed by the first author, in weekly consultation with the other two authors for ten weeks. 

We elaborate on the details of each of these areas below, further considering how these interactions related to the 

students’ problem solving as a whole.    

Findings 

Students’ use of debugging strategies  
Our first research question asked what strategies students adopted to debug e-textiles. To this end, we identified 

when students used various aspects of strategies discussed in debugging literature, including: isolating a problem 

by either forward reasoning or backward reasoning, creating hypotheses, generating solutions, and verifying 

and/or testing hypotheses or solutions (e.g., Gugerty & Olson, 1986; Katz & Anderson,1987; Vessey, 1985). We 

further looked at the usage of these strategies in relation to relative success in identifying and solving bugs. Pairs 

who identified and solved half or more (3+) of the given bugs are in bold lettering in Figure 2. We found that the 

type of problems mattered less for overall success than the strategies used in solving them, in line with Katz and 

Anderson’ (1987) observation (i.e., no type of DebugIt led to automatic success or failure).  

While all pairs used each of these strategies at some points, certain frequency and timing of the strategies 

seemed to be associated with better performing groups. For instance, less successful pairs cycled through the 

debugging strategies less frequently overall, spending significant time either isolating a single problem (i.e., a 

faulty light) and/or hypothesizing causes within a single system (i.e., circuitry or code). Looking at the groups’ 

narratives, it was clear that these groups did not consider the entire system of the DebugIt (code, circuitry and 

other physical properties) through their debugging strategies. In contrast, more successful groups tended to use 

many of the listed strategies with greater frequency and in patterns of iteration (cycling through a set of strategies 

repeatedly), visible in the checkered patterns of blocks along the rows with bolded names in Figure 2. We consider 

specific debugging strategies in more detail below. 

 
Figure 2. Visualization of debugging trajectories across eight student pairs (horizontal axis is minutes). The 

different patterns illustrate phases in debugging that pairs iterated through as given by the legend. Student pairs 

with bold lettered names debugged half or more problems in their DebugIts. 

Combined usage of forward and backward reasoning played a strong role in isolating errors in DebugIts, 

setting pairs up for opportunities to test and verify their ideas. This pattern is visible in the forward and backward 

reasoning blocks in Figure 2. All pairs spent a significant proportion of time, especially the first few minutes 

(except Carl/Lily and Edison/Uday), undertaking forward reasoning (see Figure 2). Forward reasoning involves 

search for faults “that stems from actual written code” or other given representations (Katz & Anderson, 1987, p. 

375). With respect to DebugIts, this generally involved visually scanning the physical artifact for “obvious 

mistakes” (a phase commonly used by students) such as short circuits, running consistency checks across the 

given code and circuit, and comparing the given and their previous project code. For instance, Anna and Kala 

spent a significant proportion of their initial ten minutes running exhaustive checks of the artifact and the given 

code in pursuit of errors. This started with Anna asking Kala to “check if the wires are connected correctly,” 

following inspections of the polarities of LED lights and microcontroller pins. Kala further continued to visually 

scan the code, matching the connections in the physical circuit with certain code chunks which led them to identify 

the missing function call. However, pairs that further employed backward reasoning by generating causal 

explanations for an observed unexpected behavior fixed more issues (boldened pairs in Figure 2).  

Backward reasoning involves searches that “start with the incorrect behavior of the program” or the 

artifact after testing the code and/or the artifact (Katz & Anderson, 1987, p. 375). This involved pairs taking clues 

from compiling the program or examining the runtime artifact behavior to isolate problems. As an example, Sia 
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and Rose’s fault isolation, around 30 minutes into debugging, stemmed from their observation of unexpected 

lighting patterns after uploading the compiled code onto the artifact and comparing the artifact behavior to the 

one listed in the intention statement. Their observation and eventual isolation of the issue with the conditional 

statements came from the broad set of hypotheses—spreading across the code and the physical circuit—that they 

generated based on their observation. Overall, pairs that used both forward and backward reasoning repeatedly, 

tended to identify more problems, leading them to opportunities for verification and testing. 

We also observed two different approaches to generating hypotheses and solutions: depth-first and 

breadth-first. A depth-first approach involved generating solutions based only on limited hypotheses (Vessey, 

1985). With DebugIts, this often led to solutions not rooted in actual problems, taking up substantial time for 

nonessential work. Edison and Uday hypothesized that the cause for dysfunctional lights was a positively charged 

line that connected multiple lights in parallel (see the lights on the outer ring in Figure 1, right). This was not a 

malfunction in the project based on the intention for all the lights to blink at once, but without testing the pair 

decided to redesign the circuit to connect each light to a separate microcontroller pin. Their rapid solution 

generation from a depth-first approach precluded generation and testing of other probable causes for dysfunctional 

lights. In contrast, Sia and Rose adopted a breadth-first approach, generating six different hypotheses across 

circuitry and code as probable causes for the malfunctioning lights. They began by questioning the connections 

between the lights and the microcontroller pin, then looked at the function calls in the code, cycling through a 

series of probable reasons and testing some before implementing their solution. This breadth-first approach 

provided many more opportunities to consider the working of the whole system, eliminate incorrect hypotheses, 

and generate a viable solution.  

A final key to understanding debugging strategies was the presence and frequency of verification cycles. 

Verification means examining the outcome in comparison to the intended one, either while isolating sites of errors 

or after testing a probable solution (solid blocks in Figure 2). A simple type of verification involved using the 

compiler to identify syntactical bugs in code or logical bugs as animated by the artifact behavior. Pairs that used 

verification and testing to prune their hypotheses or dig for more information as part of their backward reasoning 

solved more issues compared to pairs that verified later and less often. For example, Charlo and Milo, one of the 

more successful pairs, connected the artifact to the computer and uploaded the code to “see if [the artifact] works” 

as described in the intention statement within the initial 10 minutes. Upon observing incorrect behavior, the pair 

not only continued to hypothesize causes by both backward and forward reasoning but also devised specific 

strategies to identify the issue by further testing the lights in isolation. This early verification also led the pair to 

run cycles of verification repeatedly throughout their debugging session (see Charlo and Milo’s row in Figure 2). 

In sum, finding ways to check hypotheses about problem causes and test solutions was a key strategy that more 

successful pairs used. Notably these tests often had to be conducted across representational spaces in the e-textile 

artifacts (i.e., across the whole system of the artifact) in order to narrow down the probable solution space.  

Students’ navigation across representations and people 
Our second research question asked how students navigated the distributed problem spaces (both objects and 

people) while fixing DebugIts. Despite students’ limited experience with e-textiles, their fluid interaction with 

tools and representations and their flexible collaborative styles demonstrated their developing abilities to 

recognize relationships between different parts of the e-textiles system. Below we describe a few instances of how 

pairs ran consistency checks across modalities, matched patterns, and reconstructed representations similar to 

adult experts (Hutchins, 1995; Tucker-Raymond et al., 2017). Then we further consider how they adjusted their 

collaborative arrangements to match the demands of the task at hand. 

 One aspect of the distributed system of e-textiles is the interrelatedness of the subsystems of circuitry, 

code, and craft (Kafai et al., 2014). With respect to handling multiple representations in the problem space, 

students demonstrated their understanding of the connections between these areas as they ran consistency checks 

between circuit diagrams, printed and onscreen code, the intention statement, and the various surfaces (top, 

bottom, inside) of the physical artifact. Initially, many pairs ran consistency checks across a subset of these 

representational spaces in order to comprehend the problem space during the first few minutes. All the pairs 

attempted to understand the circuit layout by visually scanning the physical artifact (without connecting it to 

power source) and comparing it to the circuit drawing (Figure 3, left), often tracing the circuitry lines with fingers. 

In a few cases (4 out of 8), after students connected the artifact to the computer as a power source (to observe how 

the artifact functioned), they ran active visual scans comparing the artifact’s behavior with the intention statement 

and the given code (Figure 3, right). In this way the students mapped the physical connections between 

microcontroller pins and lights to the corresponding variables defined and setup as INPUTs in the code, focusing 

on the appropriate code chunks. This demonstrates students’ recognition of the relationship between the code and 

circuitry, a key aspect of debugging physical computing systems (DiSalvo & DesPortes, 2019; Fields et al., 2016).  
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Figure 3. Edison and Uday jointly compared the physical circuit with the circuit diagram (left); Uday appended 

new lines of code to the given code (middle); Anu redrew the circuit while Mike verified the outcome (right). 

Students’ fluid navigation across the different tools and spaces continued even when students introduced 

their own representations into the space, using either prior knowledge or developing new representations 

altogether. For instance, in order to check the provided code for “obvious mistakes,” more than half of the pairs 

(6 out of 8) brought in their previous (working) project code for comparison, looking for structural differences 

between code chunks. In addition, all the pairs compiled the onscreen code, watching for the “red dot” signaling 

a syntactic error in the Arduino programming environment, demonstrating their familiarity with the compiler as 

an interactive tool. However, though most of the pairs continued to examine the code after syntactic fixes, one 

pair (Adi & Bhuvan) concluded that syntax-error-free code was bug-free, which led them to ignore the logical 

issues in the code and instead spend their time hypothesizing issues only with circuitry. In addition to bringing in 

prior project codes, students introduced their own representations in the form of new notations and diagrams. For 

example, Edison and Uday first made changes to the code printed on paper (see Figure 3, middle). They chose to 

write their changes on paper before putting them into code as a way to coordinate their understanding (i.e., for 

visibility) as well as a way to keep track of the changes they made in case they needed to undo them. 

Further, students drew on prior knowledge while evaluating circuitry and generating new diagrams. For 

example, Anu and Mike used a personal checklist based on rules they had learned from their prior e-textile projects 

to evaluate the circuitry, both of the physical artifact and the circuit diagram. They scanned the physical artifact 

for “cross overs,” frayed or loose threads that cause short circuits when crossing polarity lines. They also carefully 

looked at the circuitry in the diagram and the physical artifact for functional positive and negative connections as 

well as connections between LEDs and pin numbers on the microcontroller. As a result of these inquiries they 

chose to redraw the circuit diagram, changing to a version they thought would work better. Even though their new 

diagram included unnecessary changes (since they worked with a naïve prior conception that parallel circuits were 

buggy), the redrawing of the circuit diagram demonstrated their understanding of the importance of these paper-

based representations for coordinating their individual understandings and the enactment of their crafted solutions. 

 In addition, students also developed flexible collaborative arrangements, shifting how they collaborated 

during their class period of making artifacts. We observed that many pairs often divided the labor between circuit 

and coding, using a divide-and-conquer collaborative strategy to analyze subsets of the problem space (Figure 3, 

right). This reflects some of the ways students have traditionally divided e-textiles tasks into circuitry and coding 

during e-textiles designs (Lui et al., 2019). On the other hand, sometimes pairs worked together by coordinating 

activity across related spaces within the whole, jointly attending to specific aspects of the problem space, such as 

co-investigating the code or having one person call out the circuitry connections from the diagram while the other 

mapped the corresponding connections on the physical artifact or the code (Figure 3, left). Frequently, pairs moved 

between these two modes depending on the task at hand. For example, Sia and Rose divided the coding and sewing 

tasks between themselves while comprehending the problem space. However, they jointly conducted tasks that 

benefited from extra hands and eyes when running consistency checks and testing the whole system. In yet another 

case, Edison and Uday worked together for most of the time except when one of them had to sew to implement 

one of their solutions. In that case, the other partner inspected the code, shifting to a divide-and-conquer strategy. 

In sum, joint debugging within a distributed system not only revealed expert-like navigation across multiple 

representational spaces of the system but also displayed students’ strategic and adaptive collaborative 

arrangements, pointing to the complexity of debugging with physical computing systems like e-textiles. 

Discussion 
In this paper we investigated students’ debugging strategies and practices in e-textiles, expanding our 

understanding of debugging in the understudied area of physical computing systems. While prior research in e-

textiles has illustrated some of novices’ conceptual struggles while making (and debugging) e-textiles, our 

analyses of time-constrained, researcher-designed DebugIts in think-aloud settings allowed for more nuanced 

examination and comparison of debugging strategies and practices across pairs of students. Some debugging 

strategies we identified closely matched those previously adopted by programmers in onscreen debugging (e.g., 
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McCauley et al., 2008). Yet, we also observed distinct problem-solving practices that were specific to the 

distributed nature of the physical computing task, where problems were spread across different modalities and 

afforded rich opportunities to iteratively locate faults, generate hypotheses and solutions, and run system-wide 

tests. The ways in which learners had to aggregate information, run consistency checks, and match patterns across 

code and circuitry called for more elaborate practices than just debugging onscreen programs. Further, students 

exhibited the ability to move between different collaborative arrangements as suited to various tasks of debugging 

the distributed physical system. These findings demonstrate some of the unique challenges and opportunities 

available in debugging physical computing systems, calling for deeper research on strategies to support learners 

through pedagogical and tool designs, and further research in debugging in physical computing systems.  

One particular challenge this study revealed is the difficulty some students had in employing system-

level strategies both while isolating issues and hypothesizing probable causes within physical computing systems. 

Students who were more successful followed approaches of hypothesizing multiple causes for a problem and 

pruning these hypotheses with testing and verifying across the whole system (Gugerty & Olson, 1986). How can 

we provide more support for listing multiple possible causes of errors across the system and systematically 

reasoning through these hypotheses before jumping to a solution that may be time-consuming and/or ineffective 

to implement? One solution may be to create debugging activities like those in this paper, as a means of providing 

students more opportunities for debugging without the pressure of successfully realizing a personally relevant 

project. Prior research on less challenging DebugIts in e-textiles suggests that students may find these activities 

encouraging and helpful for their learning, pulling them outside of their normal design space to debug a project 

they are less emotionally connected to (Fields et al., 2016). In addition, opportunities like time-limited DebugIts 

may provide an explicit opportunity for students to reflect on and share their debugging strategies, including their 

own invented collaborative arrangements. Sharing design strategies is already a documented productive practice 

in classrooms focused on physical computing (Fields et al., 2018). Sharing debugging strategies more explicitly 

may be a further means to support student learning and agency. Another way to support students is to share 

collaborative arrangements that help to coordinate across these areas, helping learners jointly problem-solve in 

ways that move beyond divide-and-conquer strategies that seem to occur more intuitively in areas like e-textiles 

(Buchholz et al., 2014; Lui et al, 2019). Further research is needed to understand how DebugIts may support 

learning, including how and where within a design trajectory they are useful.  

A further challenge revealed in this study was students’ difficulty of coordinating between various 

components of physical computing systems, for instance between the physical artifact, representations on paper, 

and the onscreen programming environment. The struggle to coordinate different aspects of e-textiles surfaced in 

the ways some pairs failed to account for the whole system during the debugging process. One way to support 

students in looking at the whole system is to design and develop suitable tools. Current compilers, debuggers and 

multimeters are mostly designed for individual, localized testing of code or circuitry within a single sub-system 

of e-textiles but not across the whole system at once. Instead we need new tools that help students navigate across 

code, circuitry, and multiple surfaces of a physical artifact in relation to one another rather than in isolation. This 

is in line with the call for such specific tools by DesPortes and DiSalvo (2019) that can support student testing of 

their naïve conceptions and debugging. Specific tools that make whole system state visible and help students 

check across both circuitry and code is one of the ideas for new tools, though there may be many more. Learning 

how to debug physical computing systems like e-textiles involve complex challenges in understanding not only 

software but also hardware issues.  Our analyses of think-aloud sessions provided insights into what students are 

capable of and where they might need more support in the form of tools and pedagogical scaffolds.  
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