
Pair Debugging of Electronic Textiles Projects:
Analyzing Think-Aloud Protocols for High School Students’

Strategies and Practices While Problem Solving

Gayithri Jayathirtha, University of Pennsylvania, gayithri@upenn.edu

Deborah Fields, Utah State University, deborah.fields@usu.edu

Yasmin Kafai, University of Pennsylvania, kafai@upenn.edu

Abstract: Much attention has focused on student learning while making physical computational

artifacts such as robots or electronic textiles, but little is known about how students engage with

the hardware and software debugging issues that often arise. In order to better understand

students’ debugging strategies and practices, we conducted and video-recorded eight think-

aloud sessions (~45 minutes each) of high school student pairs debugging electronic textiles

projects with researcher-designed programming and circuitry/crafting bugs. We analyzed each

video to understand pairs’ debugging strategies and practices in navigating the multi-

representational problem space. Our findings reveal the importance of employing system-level

strategies while debugging physical computing systems, and of coordinating between various

components of physical computing systems, for instance between the physical artifact,

representations on paper, and the onscreen programming environment. We discuss the

implications of our findings for future research and designing instruction and tools for learning

with and debugging physical computing systems.

Keywords: Debugging, think-aloud protocol, electronic textiles, high school computing

learning, physical computing.

Introduction
The push to bring computing courses into K-12 education (Passey, 2017) introduces students to key computational

thinking concepts and practices. Much of student learning takes place in the context of designing screen-based

applications such as games, animations or stories (Kafai & Burke, 2014), but now also extends to designing

physical computing artifacts such as robots (Blikstein, 2013) or electronic textiles (Buechley, Peppler, Eisenberg

& Kafai, 2013). However, most of the attention has been paid to how students learn the necessary computational

skills to complete their artifact creation with relatively little attention paid to the equally important debugging

skills needed to address the inevitable problems or bugs that arise. Debugging can be defined as the process of

“finding out exactly where the error is and how to fix it” within computing programs (McCauley et al., 2008, p.

68). Learning debugging is a key computational practice which involves several specific steps such as isolating

the problem, hypothesizing causes, generating and implementing a solution, and running verifications (Gugerty

& Olson, 1986; Katz & Anderson, 1987).

Because most of the studies examining debugging were conducted in the 1980s with undergraduate and

graduate students (McCauley et al., 2008), very little is known about how their findings will extend to K-12

students and their struggles, especially with the more recently developed physical computing systems (Booth,

Stumpf, Bird & Jones, 2016). Electronic textiles (e-textiles) is one such physical construction kit designed for

learners to sew microcontrollers and other electronic components onto fabric substrates using conductive thread

and program them (Buechley et al., 2013). Debugging e-textile artifacts requires not only fixing problems related

to syntax and semantics of the programming language but also addressing circuitry issues, for instance with

polarity or short circuits, on multi-surfaced physical artifacts (Jayathirtha, Fields & Kafai, 2018). While a few

recent efforts have begun examining adult learners debugging physical computing systems (Booth et al., 2016;

DesPortes & DiSalvo, 2019), less is known about how high school students’ approach and deal with challenges

in debugging their artifacts—critical knowledge for both teachers and students as more of these type of

programming activities are now entering K-12 computer science classrooms (Kafai et al., 2019).

In this paper, we move from busy classroom settings into more constrained think-aloud sessions

(Ericsson & Simon, 1998) to better understand students’ debugging of electronic textiles. While think-aloud

protocols often focus on individual learners, we decided to engage pairs of students to facilitate students’

verbalization of strategies in a more authentic fashion but also to leverage students’ prior collaborative classroom

experiences (Fields, Jayathirtha & Kafai, 2019). Furthermore, the multi-modal nature of physical computing

systems which require learners to interact with an array of physical and electronic materials, computer screen and

ICLS 2020 Proceedings 1047 © ISLS

artifacts was video-recorded. We conducted eight think-aloud sessions, each approximately 45-minutes long, as

pairs of high school students debugged e-textiles projects with multiple (researcher-designed) problems involving

crafting, circuit and programming. We then undertook systematic video analysis (Derry et al., 2010) to answer

the following questions: (1) What debugging strategies do novice high school students adopt to identify and

address the problems in the e-textiles projects? And, (2) How do they navigate the multi-representational problem

spaces as they debugged these projects? In the discussion, we address what we learned about students’ successes

and struggles in finding and fixing problems, and outline recommendations for further research and design efforts,

and pedagogical interventions.

Background
Debugging is key to realizing any computational artifact and requires learners to reason and exercise specific

problem-solving strategies (McCauley et al., 2008). Prior studies examining on-screen debugging which have

focused predominantly on college and graduate students highlight the role of learners’ prior knowledge to work

through different problem-solving stages such as fault isolation, hypothesis and solution generation, testing, and

verification (Gugerty & Olson, 1986; Katz & Anderson, 1987). While debugging problems, these students were

observed pursuing specific strategies: forward reasoning (i.e., bug search starting from the given representations

such as code while comprehending an unfamiliar problem space), and backward reasoning (i.e., bug search

starting from the observation of incorrect behavior based on compiler feedback once sufficiently familiar with the

problem) (Katz & Anderson, 1987). Furthermore, novice and expert adult debuggers pursued qualitatively

different approaches to generating hypotheses: experts adopted breadth-first approaches as they hypothesized

more exhaustively and tested before generating solutions, while novices took depth-first approaches as they

hypothesized about fewer causes before implementing a fix (Vessey, 1985). Gugerty and Olson (1986) also found

that expert graduate students tended to test their hypotheses and solutions more often and earlier during debugging

compared to their novice counterparts. In sum, expert and novice adults tend to use different strategies and

reasoning processes while debugging traditional on-screen computer programs.

 Nevertheless, only a few studies have closely examined debugging within physical computing systems.

These have revealed undergraduate novices’ difficulties in programming Arduino-based artifacts: a majority of

debugging issues related to programming while the remaining were distributed between circuitry and the

intersection of circuit and programming (Booth et al., 2016; DesPortes & DiSalvo, 2019). A classroom study

examining high school students debugging Arduino-based e-textile artifacts noted an almost equal distribution of

challenges across circuitry, programming, crafting and design (Jayathirtha et al., 2018), a difference that can be

attributed to e-textiles circuitry components such as uninsulated conductive thread, which is more prone to short

circuits. While these studies examined debugging while making artifacts, one study presented high school students

with pre-designed buggy projects and examined approaches and success rates in solving them (Fields, Searle &

Kafai, 2016). This approach of presenting e-textile projects embedded with problems became the foundation for

our proposed think-aloud study to examine in a more systematic fashion how student pairs iterate through different

phases of debugging—fault isolation, hypotheses and solution generation, and testing and verifications—-with

the purpose of better understanding high school students’ debugging trajectories and challenges.

Moreover, we wanted to take a more careful look at how novices navigated the complex system of tools

and representations while debugging, yet another key aspect of working with physical computing systems (e.g.,

Kafai, Fields & Searle, 2014; Searle, Litts & Kafai, 2018). From circuit drawings to code within a programming

environment to the programmed physical artifacts, students need to draw on different kinds of information across

these representations as they debug. These various representations and tools, along with the learners’ prior

experiences, can be seen as a distributed system in which learners “recognize, recall, pattern match, check for

consistency across modality, construct and reconstruct” representations (Hutchins, 1995, p. 284) as they debug.

Prior research on related physical computing activities indicates that adult makers often navigate multiple

representations during the process of planning, designing and making artifacts (Tucker-Raymond, Gravel,

Kohberger & Browne, 2017). Further, with collaborative work, coordination with others is another aspect of the

distributed system of e-textiles where prior research has shown that students often distribute work in e-textiles

based on perceived expertise in circuitry and coding (Buchholz et al., 2014; Searle et al., 2018). Thus, our research

focused on understanding students’ strategies and practices as they collaboratively debugged e-textiles projects

in order to inform efforts to design supportive tools and pedagogical scaffolds.

Methods

Participants

ICLS 2020 Proceedings 1048 © ISLS

Our study took place in an introductory computer science high school classroom within a U.S. charter school in a

large west coast school district that accepts all geographically local students (55% of students from ethnic groups

underrepresented in computing and 54% from economically disadvantaged families). The class was implementing

the e-textiles unit (Kafai et al., 2019) of the Exploring Computer Science curriculum in which students make four

projects, exploring textile crafts, circuitry concepts such as electric polarity, and computational concepts such as

sequence, conditionals, digital and analog inputs and outputs. Students were between their third and fourth

projects in the curriculum when each pair, as established during the collaborative third project, were invited to

think-aloud and debug a researcher-designed buggy project (what we call a DebugIt) within a 55-minute class

period. We created four pairs of DebugIts (8 in total) and had a total of 14 high school students participate, eight

males and six females with one of the pairs debugging two projects, as planned by the teacher.

Data collection
We videotaped all eight think-aloud debugging sessions, each roughly 45 minutes long. Each pair was given a

researcher-designed DebugIt, printed code, an intention statement (how the project should work after debugging),

a “teacher approved” circuit drawing (i.e., with no errors), a computer with programming environment, sewing

supplies, and paper (see Figure 1, left). The four DebugIt designs were aesthetically different but had similar bugs,

allowing for comparisons of practices and strategies across student pairs. Two of the four DebugIt designs were

based on the third (mural) project in the e-textiles unit with two digital switches as inputs and LED lights as digital

outputs; the other two DebugIt designs were based on the fourth (human sensor) project, with a hand-crafted

analog “squeeze” sensor and LED lights as digital outputs. Each DebugIt had exactly three circuitry and three

programming bugs, with different physical layouts but the students did not know the number of bugs. The crafted

circuit on the DebugIt had bugs such as loose connections causing short circuits and reverse polarity (see Figure

1, right) while the “teacher approved” circuit drawing had the circuit layout, polarity of the LEDs and

microcontroller pin numbers, all as intended in a functional artifact. The code, approximately 30 lines long, had

errors such as missing initialization, incorrect logical expressions and mismatched variables, based on challenges

novices face while making Arduino-based projects (Booth et al., 2016; Jayathirtha et al., 2018).

Figure 1. A snapshot of a pair in action depicting different tools and representations that were available to debug

(left); a visualization of the given buggy artifact with three circuitry mistakes as labeled (right).

We asked all pairs to think aloud as they debugged the DebugIts and video-recorded them. The researcher

regularly probed students to verbalize their thoughts as per the think-aloud protocol (Ericsson & Simon, 1998).

Data analysis
All eight videos were systematically and iteratively analyzed in a deductive fashion (Derry et al., 2010), guided

by our two research questions. We adopted a distributed cognition lens throughout our analysis and treated the

whole system—learners, tools and representations—as the unit of analysis (Hutchins, 1995) instead of focusing

on individuals. As a first step, each video was indexed and sliced into 5-minute segments and details regarding

the different interactions were noted. We synthesized all the notes across segments to create descriptive narratives

and intermediate visualizations for each pair, as described by Derry and colleagues (2010). These intermediate

representations comprising of annotated screen captures and transcripts of the videos enabled discussions among

researchers to observe patterns and generate codes. Initially, one of the videos was watched together by all three

authors to iteratively generate codes, narrative descriptions and intermediate representations until a consensus

about different codes was reached. In the end, each 5-minute segment was coded to capture phases of problem-

solving, different strategies and reasoning, interactions with tools and representations, and nature of collaboration

within each segment. These were compared with the coding and descriptive results produced by another researcher

colleague to ensure consistency. Upon confirming a match of overall descriptions, the remaining seven videos

ICLS 2020 Proceedings 1049 © ISLS

were watched and analyzed by the first author, in weekly consultation with the other two authors for ten weeks.

We elaborate on the details of each of these areas below, further considering how these interactions related to the

students’ problem solving as a whole.

Findings

Students’ use of debugging strategies
Our first research question asked what strategies students adopted to debug e-textiles. To this end, we identified

when students used various aspects of strategies discussed in debugging literature, including: isolating a problem

by either forward reasoning or backward reasoning, creating hypotheses, generating solutions, and verifying

and/or testing hypotheses or solutions (e.g., Gugerty & Olson, 1986; Katz & Anderson,1987; Vessey, 1985). We

further looked at the usage of these strategies in relation to relative success in identifying and solving bugs. Pairs

who identified and solved half or more (3+) of the given bugs are in bold lettering in Figure 2. We found that the

type of problems mattered less for overall success than the strategies used in solving them, in line with Katz and

Anderson’ (1987) observation (i.e., no type of DebugIt led to automatic success or failure).

While all pairs used each of these strategies at some points, certain frequency and timing of the strategies

seemed to be associated with better performing groups. For instance, less successful pairs cycled through the

debugging strategies less frequently overall, spending significant time either isolating a single problem (i.e., a

faulty light) and/or hypothesizing causes within a single system (i.e., circuitry or code). Looking at the groups’

narratives, it was clear that these groups did not consider the entire system of the DebugIt (code, circuitry and

other physical properties) through their debugging strategies. In contrast, more successful groups tended to use

many of the listed strategies with greater frequency and in patterns of iteration (cycling through a set of strategies

repeatedly), visible in the checkered patterns of blocks along the rows with bolded names in Figure 2. We consider

specific debugging strategies in more detail below.

Figure 2. Visualization of debugging trajectories across eight student pairs (horizontal axis is minutes). The

different patterns illustrate phases in debugging that pairs iterated through as given by the legend. Student pairs

with bold lettered names debugged half or more problems in their DebugIts.

Combined usage of forward and backward reasoning played a strong role in isolating errors in DebugIts,

setting pairs up for opportunities to test and verify their ideas. This pattern is visible in the forward and backward

reasoning blocks in Figure 2. All pairs spent a significant proportion of time, especially the first few minutes

(except Carl/Lily and Edison/Uday), undertaking forward reasoning (see Figure 2). Forward reasoning involves

search for faults “that stems from actual written code” or other given representations (Katz & Anderson, 1987, p.

375). With respect to DebugIts, this generally involved visually scanning the physical artifact for “obvious

mistakes” (a phase commonly used by students) such as short circuits, running consistency checks across the

given code and circuit, and comparing the given and their previous project code. For instance, Anna and Kala

spent a significant proportion of their initial ten minutes running exhaustive checks of the artifact and the given

code in pursuit of errors. This started with Anna asking Kala to “check if the wires are connected correctly,”

following inspections of the polarities of LED lights and microcontroller pins. Kala further continued to visually

scan the code, matching the connections in the physical circuit with certain code chunks which led them to identify

the missing function call. However, pairs that further employed backward reasoning by generating causal

explanations for an observed unexpected behavior fixed more issues (boldened pairs in Figure 2).

Backward reasoning involves searches that “start with the incorrect behavior of the program” or the

artifact after testing the code and/or the artifact (Katz & Anderson, 1987, p. 375). This involved pairs taking clues

from compiling the program or examining the runtime artifact behavior to isolate problems. As an example, Sia

ICLS 2020 Proceedings 1050 © ISLS

and Rose’s fault isolation, around 30 minutes into debugging, stemmed from their observation of unexpected

lighting patterns after uploading the compiled code onto the artifact and comparing the artifact behavior to the

one listed in the intention statement. Their observation and eventual isolation of the issue with the conditional

statements came from the broad set of hypotheses—spreading across the code and the physical circuit—that they

generated based on their observation. Overall, pairs that used both forward and backward reasoning repeatedly,

tended to identify more problems, leading them to opportunities for verification and testing.

We also observed two different approaches to generating hypotheses and solutions: depth-first and

breadth-first. A depth-first approach involved generating solutions based only on limited hypotheses (Vessey,

1985). With DebugIts, this often led to solutions not rooted in actual problems, taking up substantial time for

nonessential work. Edison and Uday hypothesized that the cause for dysfunctional lights was a positively charged

line that connected multiple lights in parallel (see the lights on the outer ring in Figure 1, right). This was not a

malfunction in the project based on the intention for all the lights to blink at once, but without testing the pair

decided to redesign the circuit to connect each light to a separate microcontroller pin. Their rapid solution

generation from a depth-first approach precluded generation and testing of other probable causes for dysfunctional

lights. In contrast, Sia and Rose adopted a breadth-first approach, generating six different hypotheses across

circuitry and code as probable causes for the malfunctioning lights. They began by questioning the connections

between the lights and the microcontroller pin, then looked at the function calls in the code, cycling through a

series of probable reasons and testing some before implementing their solution. This breadth-first approach

provided many more opportunities to consider the working of the whole system, eliminate incorrect hypotheses,

and generate a viable solution.

A final key to understanding debugging strategies was the presence and frequency of verification cycles.

Verification means examining the outcome in comparison to the intended one, either while isolating sites of errors

or after testing a probable solution (solid blocks in Figure 2). A simple type of verification involved using the

compiler to identify syntactical bugs in code or logical bugs as animated by the artifact behavior. Pairs that used

verification and testing to prune their hypotheses or dig for more information as part of their backward reasoning

solved more issues compared to pairs that verified later and less often. For example, Charlo and Milo, one of the

more successful pairs, connected the artifact to the computer and uploaded the code to “see if [the artifact] works”

as described in the intention statement within the initial 10 minutes. Upon observing incorrect behavior, the pair

not only continued to hypothesize causes by both backward and forward reasoning but also devised specific

strategies to identify the issue by further testing the lights in isolation. This early verification also led the pair to

run cycles of verification repeatedly throughout their debugging session (see Charlo and Milo’s row in Figure 2).

In sum, finding ways to check hypotheses about problem causes and test solutions was a key strategy that more

successful pairs used. Notably these tests often had to be conducted across representational spaces in the e-textile

artifacts (i.e., across the whole system of the artifact) in order to narrow down the probable solution space.

Students’ navigation across representations and people
Our second research question asked how students navigated the distributed problem spaces (both objects and

people) while fixing DebugIts. Despite students’ limited experience with e-textiles, their fluid interaction with

tools and representations and their flexible collaborative styles demonstrated their developing abilities to

recognize relationships between different parts of the e-textiles system. Below we describe a few instances of how

pairs ran consistency checks across modalities, matched patterns, and reconstructed representations similar to

adult experts (Hutchins, 1995; Tucker-Raymond et al., 2017). Then we further consider how they adjusted their

collaborative arrangements to match the demands of the task at hand.

 One aspect of the distributed system of e-textiles is the interrelatedness of the subsystems of circuitry,

code, and craft (Kafai et al., 2014). With respect to handling multiple representations in the problem space,

students demonstrated their understanding of the connections between these areas as they ran consistency checks

between circuit diagrams, printed and onscreen code, the intention statement, and the various surfaces (top,

bottom, inside) of the physical artifact. Initially, many pairs ran consistency checks across a subset of these

representational spaces in order to comprehend the problem space during the first few minutes. All the pairs

attempted to understand the circuit layout by visually scanning the physical artifact (without connecting it to

power source) and comparing it to the circuit drawing (Figure 3, left), often tracing the circuitry lines with fingers.

In a few cases (4 out of 8), after students connected the artifact to the computer as a power source (to observe how

the artifact functioned), they ran active visual scans comparing the artifact’s behavior with the intention statement

and the given code (Figure 3, right). In this way the students mapped the physical connections between

microcontroller pins and lights to the corresponding variables defined and setup as INPUTs in the code, focusing

on the appropriate code chunks. This demonstrates students’ recognition of the relationship between the code and

circuitry, a key aspect of debugging physical computing systems (DiSalvo & DesPortes, 2019; Fields et al., 2016).

ICLS 2020 Proceedings 1051 © ISLS

Figure 3. Edison and Uday jointly compared the physical circuit with the circuit diagram (left); Uday appended

new lines of code to the given code (middle); Anu redrew the circuit while Mike verified the outcome (right).

Students’ fluid navigation across the different tools and spaces continued even when students introduced

their own representations into the space, using either prior knowledge or developing new representations

altogether. For instance, in order to check the provided code for “obvious mistakes,” more than half of the pairs

(6 out of 8) brought in their previous (working) project code for comparison, looking for structural differences

between code chunks. In addition, all the pairs compiled the onscreen code, watching for the “red dot” signaling

a syntactic error in the Arduino programming environment, demonstrating their familiarity with the compiler as

an interactive tool. However, though most of the pairs continued to examine the code after syntactic fixes, one

pair (Adi & Bhuvan) concluded that syntax-error-free code was bug-free, which led them to ignore the logical

issues in the code and instead spend their time hypothesizing issues only with circuitry. In addition to bringing in

prior project codes, students introduced their own representations in the form of new notations and diagrams. For

example, Edison and Uday first made changes to the code printed on paper (see Figure 3, middle). They chose to

write their changes on paper before putting them into code as a way to coordinate their understanding (i.e., for

visibility) as well as a way to keep track of the changes they made in case they needed to undo them.

Further, students drew on prior knowledge while evaluating circuitry and generating new diagrams. For

example, Anu and Mike used a personal checklist based on rules they had learned from their prior e-textile projects

to evaluate the circuitry, both of the physical artifact and the circuit diagram. They scanned the physical artifact

for “cross overs,” frayed or loose threads that cause short circuits when crossing polarity lines. They also carefully

looked at the circuitry in the diagram and the physical artifact for functional positive and negative connections as

well as connections between LEDs and pin numbers on the microcontroller. As a result of these inquiries they

chose to redraw the circuit diagram, changing to a version they thought would work better. Even though their new

diagram included unnecessary changes (since they worked with a naïve prior conception that parallel circuits were

buggy), the redrawing of the circuit diagram demonstrated their understanding of the importance of these paper-

based representations for coordinating their individual understandings and the enactment of their crafted solutions.

 In addition, students also developed flexible collaborative arrangements, shifting how they collaborated

during their class period of making artifacts. We observed that many pairs often divided the labor between circuit

and coding, using a divide-and-conquer collaborative strategy to analyze subsets of the problem space (Figure 3,

right). This reflects some of the ways students have traditionally divided e-textiles tasks into circuitry and coding

during e-textiles designs (Lui et al., 2019). On the other hand, sometimes pairs worked together by coordinating

activity across related spaces within the whole, jointly attending to specific aspects of the problem space, such as

co-investigating the code or having one person call out the circuitry connections from the diagram while the other

mapped the corresponding connections on the physical artifact or the code (Figure 3, left). Frequently, pairs moved

between these two modes depending on the task at hand. For example, Sia and Rose divided the coding and sewing

tasks between themselves while comprehending the problem space. However, they jointly conducted tasks that

benefited from extra hands and eyes when running consistency checks and testing the whole system. In yet another

case, Edison and Uday worked together for most of the time except when one of them had to sew to implement

one of their solutions. In that case, the other partner inspected the code, shifting to a divide-and-conquer strategy.

In sum, joint debugging within a distributed system not only revealed expert-like navigation across multiple

representational spaces of the system but also displayed students’ strategic and adaptive collaborative

arrangements, pointing to the complexity of debugging with physical computing systems like e-textiles.

Discussion
In this paper we investigated students’ debugging strategies and practices in e-textiles, expanding our

understanding of debugging in the understudied area of physical computing systems. While prior research in e-

textiles has illustrated some of novices’ conceptual struggles while making (and debugging) e-textiles, our

analyses of time-constrained, researcher-designed DebugIts in think-aloud settings allowed for more nuanced

examination and comparison of debugging strategies and practices across pairs of students. Some debugging

strategies we identified closely matched those previously adopted by programmers in onscreen debugging (e.g.,

ICLS 2020 Proceedings 1052 © ISLS

McCauley et al., 2008). Yet, we also observed distinct problem-solving practices that were specific to the

distributed nature of the physical computing task, where problems were spread across different modalities and

afforded rich opportunities to iteratively locate faults, generate hypotheses and solutions, and run system-wide

tests. The ways in which learners had to aggregate information, run consistency checks, and match patterns across

code and circuitry called for more elaborate practices than just debugging onscreen programs. Further, students

exhibited the ability to move between different collaborative arrangements as suited to various tasks of debugging

the distributed physical system. These findings demonstrate some of the unique challenges and opportunities

available in debugging physical computing systems, calling for deeper research on strategies to support learners

through pedagogical and tool designs, and further research in debugging in physical computing systems.

One particular challenge this study revealed is the difficulty some students had in employing system-

level strategies both while isolating issues and hypothesizing probable causes within physical computing systems.

Students who were more successful followed approaches of hypothesizing multiple causes for a problem and

pruning these hypotheses with testing and verifying across the whole system (Gugerty & Olson, 1986). How can

we provide more support for listing multiple possible causes of errors across the system and systematically

reasoning through these hypotheses before jumping to a solution that may be time-consuming and/or ineffective

to implement? One solution may be to create debugging activities like those in this paper, as a means of providing

students more opportunities for debugging without the pressure of successfully realizing a personally relevant

project. Prior research on less challenging DebugIts in e-textiles suggests that students may find these activities

encouraging and helpful for their learning, pulling them outside of their normal design space to debug a project

they are less emotionally connected to (Fields et al., 2016). In addition, opportunities like time-limited DebugIts

may provide an explicit opportunity for students to reflect on and share their debugging strategies, including their

own invented collaborative arrangements. Sharing design strategies is already a documented productive practice

in classrooms focused on physical computing (Fields et al., 2018). Sharing debugging strategies more explicitly

may be a further means to support student learning and agency. Another way to support students is to share

collaborative arrangements that help to coordinate across these areas, helping learners jointly problem-solve in

ways that move beyond divide-and-conquer strategies that seem to occur more intuitively in areas like e-textiles

(Buchholz et al., 2014; Lui et al, 2019). Further research is needed to understand how DebugIts may support

learning, including how and where within a design trajectory they are useful.

A further challenge revealed in this study was students’ difficulty of coordinating between various

components of physical computing systems, for instance between the physical artifact, representations on paper,

and the onscreen programming environment. The struggle to coordinate different aspects of e-textiles surfaced in

the ways some pairs failed to account for the whole system during the debugging process. One way to support

students in looking at the whole system is to design and develop suitable tools. Current compilers, debuggers and

multimeters are mostly designed for individual, localized testing of code or circuitry within a single sub-system

of e-textiles but not across the whole system at once. Instead we need new tools that help students navigate across

code, circuitry, and multiple surfaces of a physical artifact in relation to one another rather than in isolation. This

is in line with the call for such specific tools by DesPortes and DiSalvo (2019) that can support student testing of

their naïve conceptions and debugging. Specific tools that make whole system state visible and help students

check across both circuitry and code is one of the ideas for new tools, though there may be many more. Learning

how to debug physical computing systems like e-textiles involve complex challenges in understanding not only

software but also hardware issues. Our analyses of think-aloud sessions provided insights into what students are

capable of and where they might need more support in the form of tools and pedagogical scaffolds.

References
Booth, T., Stumpf, S., Bird, J., & Jones, S. (2016). Crossed wires: Investigating the problems of end-user

developers in a physical computing task. In Proceedings of the 2016 CHI Conference on Human Factors

in Computing Systems, 3485-3497. ACM.

Buchholz, B., Shively, K., Peppler, K., & Wohlwend, K. (2014). Hands on, hands off: Gendered access in crafting

and electronics practices. Mind, Culture, and Activity, 21(4), 278-297.

Buechley, L., Peppler, K., Eisenberg, M., & Yasmin, K. (2013). Textile Messages: Dispatches from the World of

E-Textiles and Education. New York, NY: Peter Lang Publishing.

Blikstein, P. (2013). Gears of our childhood: constructionist toolkits, robotics, and physical computing, past and

future. In Proceedings of the 12th International Conference on Interaction Design and Children, 173-

182.

Derry, S. J., Pea, R. D., Barron, B., Engle, R. A., Erickson, F., Goldman, R., ... & Sherin, B. L. (2010). Conducting

video research in the learning sciences: Guidance on selection, analysis, technology, and ethics. The

Journal of the Learning Sciences, 19(1), 3-53.

ICLS 2020 Proceedings 1053 © ISLS

DesPortes, K., & DiSalvo, B. (2019). Trials and tribulations of Novices working with the Arduino. In Proceedings

of the 2019 ACM Conference on International Computing Education Research, 219-227.

Ericsson, K. A., & Simon, H. A. (1998). How to study thinking in everyday life: Contrasting think-aloud protocols

with descriptions and explanations of thinking. Mind, Culture, and Activity, 5(3), 178-186.

Fields, D. A., Jayathirtha, G., & Kafai. Y. B. (2019). Bugs as a nexus of emergent peer collaborations: Contextual

and classroom supports for solving problems in electronic textiles. In Lund, K., Niccolai, G., Lavoué, E.,

Hmelo-Silver, C., Gweon, G., Baker, M. (Ed.) In the Proceedings of the 13th International Conference

on Computer Supported Collaborative Learning, 472-479.

Fields, D. A., Kafai, Y., Nakajima, T., Goode, J., & Margolis, J. (2018). Putting making into high school computer

science classrooms: Promoting equity in teaching and learning with electronic textiles in Exploring

Computer Science. Equity & Excellence in Education, 51(1), 21-35.

Fields, D. A., Searle, K. A., & Kafai, Y. B. (2016). Deconstruction kits for learning: Students' collaborative

debugging of electronic textile designs. In Proceedings of the 6th Annual Conference on Creativity and

Fabrication in Education, 82-85. ACM.

Gugerty, L., & Olson, G. (1986). Debugging by skilled and novice programmers. ACM SIGCHI Bulletin, 17(4),

171-174.

Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive science, 19(3), 265-288.

Jayathirtha, G., Fields, D. & Kafai., Y. (2018) Computational concepts, practices, and collaboration in high school

students' debugging electronic textile projects. In Proceedings of International Conference on

Computational Thinking Education, 27 - 32. The Education University of Hong Kong, China.

Kafai, Y. B., & Burke, Q. (2014). Connected code: Why children need to learn programming. Cambridge, MA:

MIT Press.

Kafai, Y. B., Fields, D. A., Lui, D. A., Walker, J. T., Shaw, M. S., Jayathirtha, G., ... & Giang, M. T. (2019).

Stitching the loop with electronic textiles: Promoting equity in high school students' competencies and

perceptions of computer science. In Proceedings of the 50th ACM Technical Symposium on Computer

Science Education, 1176-1182. New York, NY: ACM.

Kafai, Y., Fields, D., & Searle, K. (2014). Electronic textiles as disruptive designs: Supporting and challenging

maker activities in schools. Harvard Educational Review, 84(4), 532-556.

Katz, I. R., & Anderson, J. R. (1987). Debugging: An analysis of bug-location strategies. Human-Computer

Interaction, 3(4), 351-399.

Lui, D., Kafai, Y., Litts, B., Walker, J., & Widman, S. (2019). Pair physical computing: high school students’

practices and perceptions of collaborative coding and crafting with electronic textiles. Computer Science

Education, 1-30.

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., & Zander, C. (2008).

Debugging: a review of the literature from an educational perspective. Computer Science Education,

18(2), 67-92.

Passey, D. (2017). Computer science (CS) in the compulsory education curriculum: Implications for future

research. Education and Information Technologies, 22(2), 421-443.

Searle, K. A., Litts, B. K., & Kafai, Y. B. (2018). Debugging open-ended designs: High school students’

perceptions of failure and success in an electronic textiles design activity. Thinking Skills and

Creativity, 30, 125-134.

Tucker‐Raymond, E., Gravel, B. E., Kohberger, K., & Browne, K. (2017). Source code and a screwdriver: STEM

literacy practices in fabricating activities among experienced adult makers. Journal of Adolescent &

Adult Literacy, 60(6), 617-627.

Vessey, I. (1985). Expertise in debugging computer programs: A process analysis. International Journal of Man-

Machine Studies, 23(5), 459-494.

Acknowledgments
This work was supported by a grant from the National Science Foundation to Yasmin Kafai (#1742140). Any

opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do

not necessarily reflect the views of NSF, the University of Pennsylvania, or Utah State University. We would like

to thank Justice Walker and Mia Shaw for their valuable feedback on our writing.

ICLS 2020 Proceedings 1054 © ISLS

