4

The Future of Computer-Assisted Design:
Technological Support for Kids
Building Artifacts

Mark Guzdial, Elliot Soloway, Phyllis Blumenfeld, Luke Hohmann,
Ken Ewing, Iris Tabak, Kathleen Brade
University of Michigan, Ann Arbor, MI

Yasmin Kafai
Harvard University, Cambridge, MA

Abstract A project-based learning model emphasizes student design activities to engage the
student with the domain material. Students, as novice designers, need support to be successful
in building artifacts. The GPCeditor (Goal-Plan-Code editor) is a computer-based design sup-
port environment (DSE) that supports high school students as they learn and do software design.
Case studies suggest thas students using the GPCeditor do make use of its features in learning
and doing software design. However, developing solutions to the problems students still face
requires addressing both technological and educational issues as part of a complex interrela-
tionship between instructional environment, curriculum, and technology.

INTRODUCTION

The knowledge-transmission, didactic model of American education is no
longer serving the needs of students and teachers. As has been described in many
studies over the last five years, students are falling behind their counterparts in
other countries, even compared with other American students of years past
(Farnham-Diggory, 1990).

What seems to be needed now is a more project-based (or constructionist)
approach to learning. Students who are actively engaged in designing and imple-
menting projects in a domain are also actively engaged in the learning of the
knowledge in that domain. Students building artifacts are creating critiquable,
sharable externalizations of their knowledge, which provides both motivation and
opportunity to exercise metacognitive skills.

However, students are notoriously bad designers. For example, studies of stu-
dent software designers have indicated that students do not grasp design skills such
as the ability to decompose problems into modules' (e.g., Jefferies, Turner,
Polson, and Atwood, 1981; Pea and Kurland, 1986; Spohrer and Soloway, 1985).

This research was supported by NSF Grant #MDR-9010362. Equipment for this research was
donated by Apple Computer. Mark Guzdial received support from the University of Michigan School
of Education, and Luke Hohmann received support from Electronic Data Systems Corporation.

75

76 TOOLS FOR NOVICE DESIGNERS

Without design skills, the designer is not able to cope with the complexity of the
design process or the resultant artifact (Simon, 1969). It is important for students
to be successful designers because producing bad designs can remove the incentive
to engage in project-based learning. Thus, students require support to do design.

The Goal-Plan-Code editor (GPCeditor) developed by the HiCE research
group’ is a computer-based design support environment® (DSE) that supports high
school students as they learn and do software design. The purpose of the GPCedi-
tor is to provide an environment in which students can design software (the doing
of design). Over the course of the semester, students are expected to produce
higher quality artifacts of ever-increasing complexity by using good, systematic
design process (the learning of design).

The GPCeditor implements a set of features called scaffolding that work to-
gether to support the student in the design process. These supports allow the
student to concentrate on the salient parts of the overall task (Brown, Bransford,
Ferrara, and Campione, 1983). The GPCeditor implements scaffolding for doing
design through tools and representations that encourage students to think about
software as an expert does and to use a design process based on empirical studies
of expert programmers. Scaffolding for learning design comes through encourag-
ing articulation (e.g., in names and descriptions of program components) and
reflection (e.g., by providing multiple, linked representations).

The GPCeditor has been in continuous use in Community High School® in Ann
Arbor for three years. We have observed that students do produce high-quality,
complex artifacts with good, systematic design process. In our process of analyz-
ing and measuring these outcomes, we undertook a case study of four typical
students in the class. For these students we gathered programs, process traces,
interview data, and think-aloud protocols. This chapter describes these four stu-
dents and the situation in which they worked. The following four sections cover
the following topics: (a) the components of instruction used in the class, that is, the
features of the GPCeditor, the instructional environment that evolved, and the
curriculum used in the classroom: (b) a description of the data collected and the
criteria used in their review; (c) a presentation of case studies of four students
selected as a representative sample to identify benefits and problems with our
approach; and (d) an outline of future strategies.

COMPONENTS OF INSTRUCTION

GPCeditor

The GPCeditor must support the students as they do design but also support the
students’ learning. This dual goal is accomplished by providing a rich set of design
tools whose use is structured to encourage learning. For example, a library con-
taining program fragments (whose usefulness has been proven in prior program-
ming experience) is provided, as one would expect to provide an expert designer in
order to support doing programming (Guindon and Curtis, 1988). However, in the
GPCeditor, students may not use something from the library until they have first
articulated (a learning strategy) a goal for which the library entry will be used.

This enforced articulation is one way in which the GPCeditor provides a spe-
cific design process. By providing a design process, we encourage learning the
components of the process while the order of the processes is structured. As

KIDS BUILDING ARTIFACTS 7

students use the GPCeditor. the goal is that they internalize the process and begin
using a more expert-like process resulting in the development of more expert-like
products. Thus, learning occurs in a process of doing. The design process that is
taught with the GPCeditor has three process stages.

Decomposition, or Analysis of the Problem

During decomposition, the student considers the problem requirements, formu-
lates a goal, considers the potential alternative plans for achieving that goal, and
finally chooses the plan for the given goal. For expert designers, the search for
potential plans begins with plans already developed and used in previous plans, in
the hope that the plan might be reused, thus reducing the complexity of the overall
design.

The problems of student designers begin here. The skill of being able to modu-
larly decompose problems is absolutely key in software design (Parnas, 1972) and
yet is rarely developed by students even after a full semester (or more) of pro-
gramming instruction (Pea and Kurland, 1986).

Composition, or Synthesis of the Solution

The student defines the particulars to make the generic plan fit the specific
situation (instantiating the plan for the problem) and places the plans in the pro-
gram in a particular order. Instantiating plans in software is the process of choos-
ing appropriate data objects for the procedural plan and then ordering them in a
predetermined manner to achieve a particular sequence of events.

This, too, is a key stage for student designers. A common source of error in
programs, especially in student programs, is in the integration of plans (Spohrer
and Soloway, 1985). Students find it difficult to take the decomposed elements and
combine them into a final solution.

Debugging, or a Cycling of the Design Process

An expert programmer reviews the solution and develops predictions about the
program’s behavior. Testing the program, perhaps using debugging tools such as
breakpoints, involves comparing expected results with actual results. If the com-
parison indicates that a bug exists, the programmer begins a new design cycle in
which a goal may be to find the bug or perhaps to correct the bug if the cause is
clear. Debugging must focus on the program as a whole to determine which plans
are incorrect and then shift to concentrate on the localized interactions between
component plans.

The GPCeditor provides two general sets of supports (scaffolding) in learning
and doing design. The first set provides tools to aid in reflection, which is impor-
tant for the learning of the goal-plan design methodology in the development of
software. The second set helps students learn and do the process of design and is a
critical component of the design stages described above.

Support for Reflection

The GPCeditor provides support for reflection at two levels. The first level is
through the goal-plan approach, which encourages students to think about pro-
grams in a manner similar to experts. The second level supports the first by
providing multiple representations for viewing the developing program.

Goal-plan approach. Students using the GPCeditor never type program state-

78 TOOLS FOR NOVICE DESIGNERS

ments. Instead, they construct programs by defining goals (statements of what they
wish to achieve) and plans (how they wish to achieve these goals) and then assem-
bling these plans. For each goal there are usually one or more alternative plans for
achieving the goal. These plans can be thought of as components, or program
modules, which are composed by the student to create the complete design or
program.

Plans are either defined in terms of Pascal code (e.g., a write Ln statement is
a primitive plan available to the student which writes some data to a line of the text
window) or in terms of a hierarchy of subgoals and their plans. A plan that is
defined through subgoals is referred to as a plan grouping. The role of data in a
GPCeditor program is to instantiate a plan for a particular program. For example,
the writeln plan is always the same from use to use and program to program,
but it is made specific for a particular purpose by the choice of data to write. In
this way we encourage the important design skill of tailoring program components
for specific use.

The goal-plan approach encourages modular programming by making clear the
difference between the what and the how. The GPCeditor takes this approach a
step further and allows the students to concentrate on the goals and plans of the
program without the cost of learning specific, idiosyncratic rules associated with
the Pascal programming language. Students using the GPCeditor can think about
their programs as plan-oriented reusable pieces, without concern for arguments,
scoping, or data type incompatibilities.

For example, consider the task of writing a program:

(1) to read two input numbers from the user,

(2) add them,

(3) write the result,

(4) ask the user if there were more numbers to be added, and
(5) repeat the process if the user answers in the affirmative.

A student using the GPCeditor would not be expected to address the problem in
terms of readln, writeln, and whi le—do loops. Instead, he or she is ex-
pected to think about the following:

e a GetInput plan (a plan grouping consisting of a writeln to write a
prompt for the user and a read Ln for reading a value), which asks users if they
would like to begin adding numbers,

e some other GetInput plans for reading in numbers,

e a computation plan for adding the input numbers,

e an output plan for writing the result, and

e a DoItAgain plan (a plan grouping containing a whi Le—do, a test for
equality between a string variable and a string constant such as “Yes,” and a
Get Input plan at the bottom of the loop to ask users if they would like to do the
computation again).

Research on expert software designers suggests that they use such a plan-based
structure when thinking about programs. Soloway and Ehrlich (1984) showed that
expert designers’ activity could be described in terms of a goal-plan based knowl-
edge structure. By thinking about the design in terms of what needs to be accom-

KIDS BUILDING ARTIFACTS 79

plished (goals) and plans that meet those needs, the expert designer changes the
design task from thinking about code and syntax to thinking about higher level
components.

A goal-plan approach reduces design complexity by fragmenting the task and
providing a framework for component reuse. A plan defined in terms of subgoals
defines a level of hierarchy in the program that can be dealt with almost as a
program unto itself. Thus, a program in the GPCeditor is not a monolith, but a
collection of small, manageable pieces. The notion of reuse is particularly impor-
tant as experts reuse pieces such as these, attempting to solve new problems by
using previously generated program fragments. This reuse of plans further reduces
the complexity of design by allowing the designer to treat entire branches of the
decomposed task as a solved problem.

The GPCeditor supports reuse with a plan library (lower left corner of Figure
1). The student’s library initially contains plans based on language constructs in-
cluded in traditional Macintosh Pascal implementations. Students can add their
own plans to the library (such as GetInput and DoltAgain) for later reuse.
Double-clicking on a plan in the library presents information on that plan, such as
its description, what the code for the plan looks like, and what data objects are
needed to instantiate the plan for a program.

Multiple, linked representations. The GPCeditor provides multiple, linked rep-
resentations to support students using a goal-plan approach to programming. These
representations support the student in manipulating and reflecting on the goal-plan
structure. Multiple representations provide opportunity to consider the problem
from more than one perspective (Larkin and Simon, 1987).

Figure 1 is a sample screen from the GPCeditor. The upper left window is the
goal-plan list (or bucket, in the students’ and researchers’ common language),
which contains lists of goals and plans. These identify, by name, each goal and its
corresponding plan at a particular level of hierarchy (named above the lists). In the
example, the named goals and plans implement the initial_questions
plan. The upper right window presents the traditional code-oriented view of the
program. The lower right window gives a graphical overview of the hierarchy of
goals and plans. Each goal appears with its corresponding plan, and if the plan is
defined in terms of lower level goals and plans, those appear below and connected
to the goal-plan node.

These representations are linked such that corresponding elements in all the
representations appear highlighted at the same time. Clicking on a goal name in
the goal list highlights the corresponding plan in the plan list, the corresponding
code in the code view, and the corresponding node in the overview representation.
The purpose for the linking is to encourage students to ease the transition between
working with one representation and working with several.

Support for Process

The GPCeditor enforces the model of design described earlier in this section:
decomposition of the problem, composition of the solution elements into a whole,
and debugging or testing of that whole solution. This model is similar to others
developed for programmers (Adelson and Soloway, 1984; Spohrer, 1989) and has
elements like those used to describe other design domains (e.g., Hayes and
Flower, 1980, for composition). Though fixed, it is a reasonable model of expert-
like design. Whereas design models of experts emphasize that the ordering of

‘uaauos ajdwes JoupaDdO | andiy

L viproa ¢.-.TE__ yypsos _ :1:..::_ R OTRATI AR RS T RO
i Cprpeadg UTINAML G rATpRIL G UTIRAML G
s192lq0 O
< uopdulssg @ Y
— : apol O
now ueysip: d .mn main
) rueysipl g .wuc_nwm
< 9}8a4)
i Rl d
3 (uousas)
Eila) WEIPCI—————————————— fiieiqny

L(enen s rpevd)NTIGY3Y
{(aam s ey) NTAL 1 U
(s nsanaa. YN1aY3Y

yojysanb—asue}sip:d

uonsanb-snipe.i:d gy}
ssueld

_ucozuo:ul_c_:c_EL

uoj}sanb—asus)sip:g
uolysanb—snipe.u:q

:$|009

maif apoj

}813ng uejd-jeog

smopuim Hfaeaq)y uny asodwo) asodwodag HPI B P

4

KIDS BUILDING ARTIFACTS 81

processes is not fixed (Hayes and Flower, 1980; Soloway and Ehrlich, 1984),
students need a particular, initial ordering upon which to build their own design
strategies (Corno and Snow, 1986).

The GPCeditor features scaffolding to support each of the three processes in its
design model. The operations in this model are made explicit in the menus avail-
able to the student. Operations the student wishes to perform during decomposition
are in the Decompose menu, and composition operations are in the Compose menu
(Figure 2). Menus and their associated operations are enabled and disabled to
reflect the current stage of the student’s design.

Decomposition. During decomposition, the student uses New Goal . . . to for-
mulate a goal, that is, to name and describe a goal. The library can be browsed at
any time to identify potential alternative plans. The student may not select New
Plan . . . to identify a plan for the program until a matching goal has been created.
This means that students may not put components into their design without first
identifying why the component is useful. The student can choose to create the new
plan as a plan grouping or as a plan from the library by clicking on a plan in the
library, then clicking on the Use button (Figure 1). As goals and plans are created,
they appear in the goal-plan bucket and the overview window.

Some variation on this decomposition process does occur. For example, stu-
dents sometimes use a library-driven decomposition strategy. They will browse
through the library, check descriptions of various plans, and than create a goal and
use one of the plans identified during the browse. Another variation that is not
stressed within the curriculum is that a student can create any number of high-
level, abstract goals that are not based on any particular order of composition.
Only when plans are associated with these goals does the actual composition pro-
cess occur. The important focus of the decomposition process of the GPCeditor is
that goals are created before plans are chosen, with the implicit intent being the
reasoned creation of these goals and articulations for the selections of a particular
plan.

Composition. Once a plan is identified, the student enters the composition pro-

Compose Run e Run Li
New Goal... 86 Cut ®U

Modify Goal... fihutf... =i
Remove Goal... Nest.. A
New_r'lan... Cut Pracedure

Modify Plan... fibutt Pracedure

Modify Plan Objects... 3J
Modify Paramelers..
Remove Plan...

Create Object...
Modify 0Object... €M
Remowve 0Ob ject...

Figure 2 Decompose and compose menus.

82 TOOLS FOR NOVICEE DESIGNERS

cess. A plan just copied from the library is immediately instantiated for this pro-
gram. A match window appears (Figure 3), listing the data objects needed to
instantiate this plan for a program. From this window, the student can match each
needed data object to an object already existing in the program or can create a new
data object for the plan. Some required data objects might be left unmatched, to
later be filled with plans consisting of expressions.

Students compose instantiated plans into the program using the Abutt and Nest
operations in the Compose menu. The choice of operation depends on the kind of
plan ordering desired. Abutt will place a plan either before or after another plan.
Nest will place a plan within another plan, as when placing a plan between a
while—do loop’s begin-end block. The other compose operation, Cut, re-
moves a plan from the program.

Debugging. Students change their programs during debugging by using the
same metaphors used in constructing the program. Goals and plans can be re-
moved or modified (i.e., changing names or descriptions). Plans can be matched
to different data objects. However, the enforced ordering still prevails: A goal
must be created before a plan can be identified, the plan must then be instantiated,
and only then can the plan be composed into the program. In addition, program
review tools are provided such as Step (see step through a program plan-by-plan to
review execution) and an observe window to check variable values while the
program executes.

Instructional Environment

The GPCeditor is used in Community High School, an alternative school in the
Ann Arbor school district. The high school is loosely structured and emphasizes
individual creativity and interdisciplinary efforts. Students do not have home-
rooms: They have forums that are as likely to meet in the evening at an area

[E====—=—==== Match objects for plan: user_input =——

write_choice™
read_choice

write_choice a string constant
The prompt for the user to enter his choice.

|

Figure 3 GPCeditor match window for instantiating plans for a program with data.

KIDS BUILDING ARTIFACTS 83

theater as in a formal classroom. Students are neither necessarily gifted nor learn-
ing disabled. They elect to come to this school because they are uncomfortable
with more traditional schools.

Students apply to enter the course. Selection of students for the course is made
by the administration, the course instructor, and members of the Highly Interactive
Computing Environments (HiCE) research group. The goal is to fill the class with
a wide range of students on dimensions such as gender, race, past computer expe-
rience, and academic performance. Ten to eleven students take the class each
semester. The class using the GPCeditor has been run every semester since winter
1989. The students discussed in this chapter used the GPCeditor in fall 1989.

In the semester during which data were gathered for this chapter, the class met
five days a week for two hours a day.” Because a two-hour class was unusual for
Community High, the class was scheduled for the last hour of the normal day and
one additional hour after school.

The instructor for the course, Robert Kinel, has been teaching mathematics
(algebra, geometry, and calculus) for more than ten years, and computer science
(specifically, Pascal) for seven years. He, with members of the HiCE group,®
evolved the style of classroom interaction during the first semester of the course.
Each student progresses through a set of worksheets at his or her own pace. The
instructors wander through the classroom, providing individual instruction when
asked and offering advice or asking students about their projects to encourage
reflection. Thus, the instructor takes the role of the mentor, with the GPCeditor
providing the needed technological support for the mentoring process. Occasion-
ally, the class gathers to discuss a common issue.

For example, a common group discussion topic is on what makes a good de-
sign. The instructor presents students’ programs in their overview representation
on an overhead projector and has the students review and critique each design. The
instructor might ask the students if the depth of decomposition and branching was
appropriate, of if a different decomposition would have been better.

Although the course may sound teacher-intensive, in actual practice it is not.
Students work alone or interact with their peers, for the most part. The teacher
may provide coaching and instruction to an individual student for an entire class
period without disturbing the activities of other students in the class. The GPCedi-
tor provides enough support for many students in the class. However, even the
amount of one-on-one interaction that is required might be too much for some
classrooms. We address the point of needing to capture more of the teacher’s
expertise in the environment in the later section on future enhancements.

After approximately twelve weeks of the sixteen-week semester, some students
will have progressed beyond the capabilities of the GPCeditor and begun using
Lightspeed Pascal instead of the GPCeditor. Most of the students (50% to 75%)
finish the portions of the curriculum that can be completed on the GPCeditor. They
then use a traditional Pascal environment on the Macintosh to use features such as
procedures and arrays that were not yet implemented in the GPCeditor at the time
of this study.’

Curriculum

The goal of the curriculum is to teach students to develop Pascal software by
using good design skills in the framework of the expert-based software design

84 TOOLS FOR NOVICE DESIGNERS

process described earlier. The curriculum is organized toward developing increas-
ingly complex programs throughout the semester while simultaneously learning
the design skills necessary to cope with this complexity. Design skills are intro-
duced in stages as students learn more Pascal and are asked to synthesize ever
more complex programs.

The curriculum used in the GPCeditor class was originally developed by Jean-
nine Pinto and Yasmin Kafai at Yale University for use in a course at a New Haven
high school. Soloway and his group taught design using this curriculum with a
traditional Pascal programming environment. Without support for the concepts in
the environment, they found that students continued to focus on the code and not
on the goal-plan structure of design. This curriculum was updated by Kafai for use
with the GPCeditor.

The course is worksheet-based and self-paced. Students complete worksheets
that discuss topics in Pascal and design. They file their completed worksheets and
programs in individual notebooks, which the instructor collects, comments on, and
grades every two to four weeks. Table 1 lists the GPCeditor worksheets. Each
worksheet has a particular focus, as indicated by Table 1. The focuses were be-
tween Pascal constructs (e.g., the whi Le=do loop and Macintosh graphics func-
tions) and software design (e.g., identification of plans and the purpose of hierar-
chical decomposition). There are twenty-seven worksheets and forty-one
assignments in the semester.

The assignments focus on Macintosh-style graphics and user interfaces.
Students develop programs to move objects around on the screen, draw faces
with blinking eyes, play games, and accept input through the keyboard or
the mouse.

DATA AND CRITERIA

There were three foci that we used in considering the data gathered on the four
case study students: student characteristics, learning and doing design, and use of
the GPCeditor.

e The student characteristics of most concern were prior experience with com-
puters, and motivation (both at the beginning and throughout the semester).

e The issue of learning and doing design breaks into four parts: quality of
overall process and quality in each of the process stages.

— In terms of the overall process, the use of reflection and explicit planning
is key. Reflection is key to design (Jefferies et al., 1981) and to learning (Brown
et al., 1983). Explicit planning is a measure of how systematic the student is
about design.

— The other three parts of learning and doing design are the three process
stages: decomposition/reflection on the whole task, composition/reflection on
the ordering of components, and debugging/reflection on the whole program
with integrated components. Besides looking at performance on each of these
processes, a subprocess for both decomposition and composition was identified
for emphasis. For decomposition, how the student began the program was seen
as significant, and for composition, the student’s ability to handle data.

¢ To study use of the GPCeditor, two components were emphasized: the library
and the alternative representations. Besides being the most significant physical

KIDS BUILDING ARTIFACTS

Table 1 GPCeditor worksheets and their foci

Worksheet

Focus

Planning, programming, and
problem solving

Values and variables: Viva la
differences

User friendliness: The key to
popular programs

Getting coordinated: An
introduction to the GPCeditor
coordinate system

Graphics in the GPCeditor

Looping in the GPCeditor
Moving pictures in the GPCeditor

Writing good programs

Plans for moving pictures
Problem simplification

The word of the day: Hierarchy
Line drawings

Blinking cye face

Decisions, decisions, decisions

Apply your knowledge: Identifying
plans

Finding out what you know about
plans

Working with plans

Plan library

Random numbers

Random numbers and game
programs

User-friendly interfaces

Procedures

My life in disorganized crime

Or: Logical alternatives

Procedures revisited

Handling user input errors

What you do when everyone wants
to play: Arrays

Introduction to the GPCeditor. Students are asked to
compose existing library plans and execute their
programs.

Students learn the difference between values and
variables. They construct simple programs for
performing math operations.

Introduction to the Get Input plan (prompt the user
for data entry and input of data).

Students learn to specify locations in the graphics
window in terms of horizontal and vertical offsets.

Introduction to Macintosh graphics primitives, such
as paintoval and framerect.

Introduction to the while-do Loop.

Combining iteration with graphics to achieve
animation.

Identification of named plans such as Get Input and
DoltAgain.

Descriptions of plans used in animation.

Discussion on program decomposition.

Identifying program hicrarchy.

Introduction to moveto and Lineto graphics
primitives.

Draw a face with animated, blinking eyes—a complex
program requiring 20-50 lines of program code.

Introduction to the i f-then.

Identifying plans in other students’ programs.

Quiz on plans.

Introduction to debugging techniques.

List of all programming plans met in the course.

Introduction to random.

Creation of computer games using random and
if-then.

Using mouse-driven input.

Introduction to procedures.

Methods for organizing code (procedures).

Using logical conjunction.

More on procedures.

Handling data verification.

Introduction to arrays.

features of the environment (Figure 1), they are the workspaces in which the
students design.

Table 2 summarizes the data collected in the case study. The primary data
source was the think-aloud protocol. These were used to observe the students’
design processes and their use of the GPCeditor. The secondary data sources were
questionnaires, interviews, review of the students’ assigned programs, and trace
files of GPCeditor usage (which are automatically generated by the GPCeditor).

(28vd 1xau uo sanuuuod a1quy)

sueyd jo asnoy

suefd jo asnas ‘uonisodwod’dp jeuonduny
21312 03 sTuidnoad ueyd Jo asn Ayasesary
JO 51249 218315 01 s3uidnoad ueyd jo asn 1arealn

SJuapMIS |V

SIU3pmMs Inog

Aieq

sawn 221y

swesold paudissy

sjoooloid pnoje-juty],

jsel djoym uo

uonoajjal uonisoduiossp
ur Ayrxspduwos
38eusw 0} SqY

{208 1511} QUILIAIAP 0} dNSLINAY JO 3S[) SJuapms Jnog sawn 91y, sjooojoid pnoje-yuiyJ, weiSoid uidaq o3 ANIqy
(+aded-pue-j1ouad ‘syooqaiou) spie Suruuerd
{eulaixa jo asn Jo sueld jo juawnes 21 dxg SIUSPNIS INO sawn 23y, 5[020301d pnofe-3uIy] nondxe Jo SdULINDIQ
ayI-uadxa [TeI9A0
3J0WU B UONd3Yal Juanbayj alow pue Jojuey SJUAPMIS 1IN0y sawn UYL $]050103d pnoje-juiy L UonNd3[Jal JO IDUALNIID
u8isop Sutop pue Suruse]
MIAINUT
J21SaWaspIw (Jo150W98
ur joooj0ad -pru urede
Jenatued ul J0UpaDdO ut J0U SJUIPNS puB ‘I3)SUIS
ay) pue s1andwod jo wSnoy A3y jeym pue Kjuo “‘mataiur a jo SuruuiSeq
sse|d sty unje) arom Kay) Aym susapnis paysy [BNIUL UT SYUSpIIS [V 93 18 90U0) IML MTAINU] UONBAROI
90uBULIOJISd SnwapRoR
weidoud v M (a159Was pue ‘s1andwod
01 pue ‘uononnsul SunwwesSosd ‘sasuatradxa Jo pus pue pue Suruureigoid
12Indwod snotaaid 2quUOSap 0} SIUIPNIS PaySy SJuspmIs Iy Sutuui3aq 18) 201M[, alreuuONSaNY s vousuadxe Joug
SOISI9OBIBYD JUSpMIS
BUAUD SJUspmIs Jo "ON Aouanbasg 201n0s BB ansspyordar,

BLISILIO PUB $I2INOS BIEP Jo Ayswrwung Z 219y

86

M3A 1x3) pue “s1s1] ueid-|eod ‘mata1dA0 2y
Jo 9sn *+2°1 *suonejuasaidal o) aoualajas aanoy
uiaes ueid jo Junowe tsueid jo asnay
sue|d jo asnoy
Buismoiq Aseiqi) jo sajfis ‘sueyd Jo asnay

dunsay weaSosd Jo unowy

$UON231103 jnyasodind pus [eol
uo snaoJ—3urBngap ul (IS !S|00) MatARL JO aspy
uonouny £q sajqelsea jo Sunuepy

uonaury £q s10a{qo eiep [jesa1 0y Kujiqy

wes3oid Jo §53uI021400 ‘sueyd pasnas jo Suuopigy,

wesdoud Jo s5aUIa110d tsaImea)
uonisodiwod Jo asn ‘sued pasnar jo Sunopig,

Siuspwis Jnog sown QUYL
sispws 1y Aeg
swspms [y Aireq

SIuspIsS Inoy Sown 94y,
SAINJBYJ JONPIDJD JO sy
suspms [y Areq

SUIPWS IN0,J sowm 32y J,
s1uapmIs [y Aireq

SIVIPNIS INO,J sawi AUy
siapws |y Areq

SIUapIIS 1IN0y sawp Ry,

§1050104d pnoje-yuryL
S3[1y J0mN 23es)
swreidosd poudissy
sjo20301d pnofe-yuiyy

S|y d0en a8esn)

$]020301d pnofe-yuIy],
sure1301d poudissy

sj0o0j04d priofe-yuryy
sureaSoad pouSissy

$[020101d priofe-yury,

suonuussaidal
AADBWIE JO 95}

Ate1qty oy Jo sy

weidoid sjoym uo

uondfyes/3uidsngap

ur Airxsyduwiod
s8surw 0} AIqy

eep ynm suerd
AenUBISUL 0) KNIV

sjuouodwod uo

uonodyya1/uonisodwos

u Lyxapdwod
93suew o3 ApIqy

88 TOOLS FOR NOVICE DESIGNERS

Not all types of data were collected for all kinds of students, to reduce the com-
plexity of review of the data and development of these criteria.

Each protocol had a similar structure. Students were asked to complete a series
of small programs similar to ones they were doing in class. The programs were
organized such that plans created in the early programs would be useful in the later
ones. to encourage reuse. The worksheet from the first protocol appears in Appen-
dix 1 as an example. In this protocol, the students were asked to write four pro-
grams: to draw a face, to draw two faces, to ask the user his name and greet him,
and finally, both to draw two faces and to greet the user.

In addition to these formal data, less formal data were used to fill out the
picture of the classroom. A researcher visited the class two to three times a week
and kept a journal. Each student kept a daily journal on their problems, successes,
comments on the GPCeditor, and comments on the entire class. Finally, the in-
structor’s comments were often solicited.

Table 2 also summarizes the criteria used in evaluating student performance in
each of these study foci using these data.

e For student characteristics, students were asked in questionnaires and in in-
terviews what they felt about computers and the GPCeditor and what their prior
programming experience had been.

e Criteria were developed for each of the subfoci to evaluate how the student
did design. The data were compared over time by using these criteria to determine
how well students learned design.

— Reflection in the overall process was evaluated on the frequency of re-
flection and where in the process it occurred. Reflecting late in the process was
inefficient because decisions had already been made earlier in the process. Ex-
plicit planning was noted by verbal planning comments and use of notes.

— Decompositions were evaluated on the breadth and depth of the goal-
plan trees, the use of plan groupings to create levels of hierarchy, and reuse of
plans.

— Compositions were evaluated on the quality of the program, the student’s
ability to order the plans, ability to tailor reused plans, and ability to find and
use data objects.

— Debugging was evaluated on kind and purposefulness of changes and use
of debugging tools.

e Student use of the GPCeditor was evaluated on use of the library for saving and
browsing and on use of the alternative representations for reflection or manipula-
tion.

SUMMARY OF CASE STUDIES

Summary across Students

The four case study students are Sue, Allen, Lois, and Fred ! The data on these
students is presented in detail in the Appendix 2 and are summarized in Table 3.
These students were selected as a representative sample of the types of students
using the GPCeditor. These students cover a wide range of prior knowledge and
interests: from initial inexperience with programming to being self-taught in sev-
eral languages, and from entering the class excited by computers to entering the

(88vd 1xau uo sanunuod 21qur)

AJ[emudad *asnaa pue
uonisodwodsp jeuonduny
pood pey swesdosd
paudisse ‘Jauuew 2104
ut {juo pue ‘sjodoj01d
ur uonisodwosap
|EDIY2IRIDY JO SN I[N

u1daq o1 ataym
mouy J,upip juanbaig

Sujuuerd apy

sj020101d 22143 &
ul UolId3YYaL INI| pue AAeT]

uonisodwosap
[euonaun; poo8
Jo asn sweidosd paulisse
u1 91qeAlasqo sueyd jo asnay
teyy uo Fuipjing
uay) pue Suiyiawios
8utop jo onsunay e pasp)

{oc0j04d ut sueqd [eqsaa
apelW pUE J0OOG3I0U Pasn)

josotoad ur uayo pue Kpreg

sus[d jo asnaz ou
ts8urdnos8 ueid jo asn oN

Surueys wajqod ou pey

1B} U1 Suou ‘jodojosd
1831 ut sueid uanLm
PuB [eqiaA 1191[dxa opejy
158] U1 Supuidaq
18 A[uo ‘jocotosd
151y Ul uayo pue Apey

u8isop Sutop pue Supureoy

sueqd jo asna1 ou ‘paiyy
Ul 9[qeAIISqO JOU SBM
uonisoduwodsp ‘jod0j01d
Puod?s uf swajqosd
3noyyip 105 s3urdnosd
pasn £uo {josojoid
153 o ut swesosd
asodwoasp Aj[euonduny
03 vonisoduwod pasny

a1 9 Jo Aue

ut Suress wiojqold ou pey
P Ul m3) “jodojoxd
puodss ur sueld yorjdxs
wos spew ‘Zuiod sem
34 3IYMm passnosip pue

*1090%01d 1831 UT S0U PIs[)
158] i Supuuidaq
18 Afuo ‘sjosojoid

OM) 15J1J UT USYYo pue Al1eg

358 joym
uo uond3pa/uonisododaq

wesfosd Suruwmg

Sunuuerd yoydxg

[[B39A0 UORI[Y

MDIAIAIUL

[entun e Suneasmy

s131ndwod punoy
‘1diosuen) Joj ssepd ool

Jiseq JO 10)SRWIS
e uey) ss9] ownl ‘vdo 7'¢

MDIAIAUI JASIAWLISPILL
18 10UP3DdD 3y 1|
1L.UPIp ‘mataidul [entut
1e eiep Juiso| *siandwod
Yitm saoudlsadxa
nidusosuen 1oj ssepd jooL

Jiseq ul
doualsadxo Sunuwesosd
yEnel-3jas tioas ‘vdo L'

MITAINUI ISISAWISPILL

18 J0MPIDJD @ a1

3,UPIp {M3lAISUL [BNIUL
1® s1andwios u pasasu]

dsein

pue ‘[eoseq ‘siseq ul

sousuadxs Sunuwresdosd
W3ne)-Jjes ‘uvwysaly

SONSLINOBIRYD JUSPMIS

M3IAIAUI [BIIUL
18 Jondwod ul pasasaug

JIseg JO I9)SALAS B UBY)
ss9] ‘aJowoydos ‘vdo '

UonBANON

aousnadxa Joug

5107

pasd

uy

sanss|

susprus Aprus ased 10§ BIRp Jo AIBWUING £ 21qpL

89

s1ayonq ueyd-{eos

3y} JO 35N [BUOISEII0 M
‘Apewiad mata apod pasn)

asnai1 pue Suiaes

119159Wwas 1noy3nosy
Suismoiq Juanbasg

suoneuasaldal daneuIl|e
Jo 3sn 2a1308 PN

asn3s

pue Suiaes ‘1SS
Jo wed song[[nun 9sn M

MIIAIINO Y}

PaoURIaj31 19A3U ${000103d
puod9s ul uopaafes ueld
30} S19yonq ue(d-[eod jo
asn [BUOISEI0 ¢|0d0j0id

151y ul KJUO MILA 9pOd Pasf)

asnal 10 SUIABS OU M
1811 Uy SUISMOIq dAISUXT

saImea) JONPADJD JO 38N

j020101d 1531 WO
M3[AIFAO puB ‘s)onq
ue|d-[e0d ‘maA 9p02 Pas()

Suismoiq lo
‘asnal ‘SurABS JO asn IMITY

mco_uS—._owo.—ao._ AANWAY

asn Ase1ql]

so8ueyd
wopues apew :A3aens
Surddnqap ajqeynuapt oN

s|oomjoad Jaje] ul Jamaj

*1os0103d 1511 Ui B1EP

Juipuy swojqosd Auews
:5103(qO E1EP paweu-[[am

A|jemuaaa ‘syuatualinbal
papa3dxa sweidosd
:sueyd pasnai jo Fuiiofiel

$]00) pue uoliB[MLIS PIS(]

s103{qo eyep
Supuij J|qnodl ou YIm
5109(q0 B1Ep pIawIeu-[[aM

Apoausod
pauonouny sweiSoid
‘sueyd posnai pasojiel,

1a18] 1938nqap [TYssIIONS

‘jodo3o0ud 1831 ur yied

Jo youx 1507 ‘3wd3nqap

uoyMm uORE[NWIS 10}
M31A 2pod pue Indino pasn

swesSosd

1978] Uy swajqoid

ou $jodojoad I3y

u1 mep Surpuy surajqoid
ts109qo B18p pawey Kj100d

syuatwalnbas popeedxd

sweaSoad ¢(ssau pue

ungp u3axq Sulsooyo)

weiFosd 1511y ut sued

Suisodwiod swajqosd maj
‘sugyd pasnas jo Suuofrel oN

sjos0103d

138] ur 3uiddnqop

aput] ‘enbruyoay Suidsnqap
v sg AyoJeIdy pasf)

BEp
Suipuy swoafqoid ou nq
‘s1aafqo eIBp paweu £1100d

Apo31109 pauonoury

suresFoud ‘susid

Suisodwod swajgosd ou
‘sugjd pasnas Jo Julio[rel ON

weidoid ajoym
uo uondaya1/3uldsngsqg

Surppuey e

sjuouodwod
uo uonoayasyuonisodwo)

ang

s107

PRI

wivy

sanss|

(pomunuoo) sapmis Apms 9589 10j EEp Jo Aswuing £ 3197

KIDS BUILDING ARTIFACTS 9

Table 4 Data collected for case study students

Think-aloud protocols Interviews
Student First Second Third' Initial Mid-Semester r
Sue X X X X
Allen X X X X
Lois X X X
Fred X X X X

"Third protocol was with Lightspeed Pascal for all students except Sue.

class frustrated by computers. Their performance varied widely: On the first pro-
tocol, Allen completed all four programs, Fred completed the first two, and Sue
finished only the first. The learning and doing of these students offers an represen-
tative sample of the kinds of activity seen when using the GPCeditor.

As mentioned in the previous section, not all data were collected for all stu-
dents. The specific data collected for these four students are summarized in Table
4. The most data are available for Sue and Allen, the least for Lois.

In general, the students in the GPCeditor class seemed to succeed well using it.
Table 5 describes the case study students’ final projects by using a rough measure
of program complexity, the number of lines of code in the program. For a first-
semester high school programming course, these are large programs for students
to make functional, especially considering how students in traditional courses
rarely get beyond syntactic correctness in their programs (Pea and Kurland, 1986).
Individually, the case study students point out the strengths and weaknesses of the
GPCeditor approach.

Sue

Sue did seem to grasp the design concepts being taught with the GPCeditor. Sue
used hierarchical decomposition, she reused plans, and she wrote working pro-
grams. The downside was that her progress was labor-intensive both for her and
the instructor.

She needed more low-level support than the GPCeditor provided. For example,
she might have found the GPCeditor more useful if it provided heuristics for
beginning a program, more explicit process support (e.g., a prompt suggesting
*“Stop here and write down all the possible goals you might use™), and coaching
(e.g., a phrase like ““For this program, you will probably find moveto to be very
useful’’).

Table 5 Size of final projects in number of lines

Student Size Environment
Sue 41 GPCeditor
Allen! 33 and 88 Lightspeed
Lois 147 Lightspeed
Fred 144 Lightspeed

'Allen did two programs for his final project.

92 TOOLS FOR NOVICE DESIGNERS

Allen

Allen began using the GPCeditor features and design skills it exemplifies, but
then returned to novice-like skills. Though he continued to produce significant
programs, they were ill-structured and he did not use the tools of the environment.
He often complained that it was easier to work without the tools and that the
GPCeditor slowed him down.

For Allen, the GPCeditor would have served him better if it provided more
high-level support. The tools of the GPCeditor are well-designed for novice stu-
dents, but as students became more expert the tools become more of a nuisance
than an aid. Allen might have appreciated tools for structuring programs and for
tracking data that are more like those appearing in expert-level CASE (computer-
aided software engineering) tools.

Lois

For Lois, motivation was key. She was not successful in the course until she
encountered problems that captured her interest. Once she had latched on to those,
she used the functionality of the GPCeditor and learned the design skills being
taught. By the end of the semester, she was one of the most proficient designers in
the class.

Fred

Fred was an accomplished programmer entering the class. He did learn design
skills in the course, but he did not explicitly use the ones being taught. From his
comments, he may not have recognized the usefulness of the GPCeditor tools and
design skills.

Fred might have found useful some instruction that explicitly modeled the de-
sign process. As design processes are dynamic, they are difficult to transmit
through worksheets and thus require the instructor to model the design process
(Collins, 1988). By performing the task, using the tools, and explicitly demon-
strating good process, the instructor can provide a model for the students to follow
(Paris and Winograd, 1989).

Instruction in the GPCeditor class did not include expert designers using the
tools of the GPCeditor. Perhaps if Fred might have seen how the overview could
be used effectively, where decomposition was useful, and what good debugging
strategies were, he might have practiced them.

Summary across Study Foci

Though four students are too small a sample to make any statements of signifi-
cance, the case studies themselves can be summarized across study foci. These
provide some indication of how students are described under each of these foci.

Student Characteristics

Students’ past experiences with programming did not seem to affect their per-
formance with the GPCeditor as much as did other factors. Students with little
experience were able to design complex programs with high quality. Students with
a lot of experience generally did try the GPCeditor and used it in ways similar to
other students. For example, Fred had significant programming experience before
entering the class, but he had never done the kind of programming before (e.g.,

KIDS BUILDING ARTIFACTS 93

the size and complexity of the programs) that he did in the GPCeditor class. From
his comments and performance, he seemed to be giving the GPCeditor a chance.

The students’ motivation seemed to be more significant than previous program-
ming experience. Neither Lois nor Sue were particularly interested in the course or
the GPCeditor at the beginning of the semester. Neither performed well during the
first few weeks. Lois only began to improve when she grew interested in the
programs she was writing. Sue did not show much improvement in the class nor
interest in the programming assignments.

Learning and Doing Design

In this section we examine four distinct parts: the overall process and the pro-
cess within the three stages of decomposition, composition, and debugging. The
data indicate that even with the scaffolding of the software design process provided
in the GPCeditor, our students still exhibited most of the problems associated with
a novice-like approach to software design.

(1) The overall process. The students’ overall process was not very good.
Though several of the students began with good explicit planning and early and
frequent reflection, these characteristics faded in the later protocols. Those stu-
dents who did plan and reflect on the process performed well. Those who did not
produced decompositions of a poorer quality relative to other students. In some
cases the decompositions were unintelligible, although this was rare.

(2) Decomposition. The students’ decomposition were, in general, quite good,
and they did seem to improve over the course of the semester. Considering that
students are notoriously bad at modular decomposition (Spohrer and Soloway,
1985), the quality and use of plan groupings to create hierarchy in their decompo-
sitions was impressive. Most students had good heuristics for handling problems
such as determining where to begin a program. However, there was little reuse of
grouped plans.

(3) Composition. The students’ compositions were less impressive. Though their
programs did run, data names were poor and the meaning of the data object asso-
ciated with the variable name was often forgotten. The compositions were poorly
structured and hard to read. For example, Allen’s example program described in
Appendix 2 has assignment statements (whose purpose is unclear because of variable
names such as A and vari) interspersed among supposedly identical loops. Sue’s
composition, though much clearer and better structured, includes redundant plans
not related to the problem at hand as well as data objects that are never used. The
compositions did not seem to improve during the semester.

(4) Debugging. The students’ debugging was interesting in its diversity. The
students’ use of debugging tools ranged from examination of the hierarchy as a
debugging tool to use of mental simulation. Both Fred and Sue had significant
difficulty keeping track of program bugs and following up on their correction.
Students did develop debugging strategies across the semester.

The results are consistent with the previous claim that American students have
more experience in the analysis skills of decomposition and less experience with
the synthesis skills of composition and debugging.

94 TOOLS FOR NOVICE DESIGNERS

Use of GPCeditor Features

In this section we summarize interactions of the students with various features
in the GPCeditor. These observations motivate and direct changes to the existing
environment and modifications to the course curriculum.

(1) The Plan Library. The plan library was mostly used for browsing, for
finding information about plans. Though both Sue and Lois did use the library for
saving, reusing, and tailoring plans (later in the semester), most students did not.
Neither Fred nor Allen made any use of the library other than for retrieving plans
and some browsing. The library use, however, did change during the course. Sue
began saving and reusing plans early, but Lois did not until later. Fred began the
semester doing a lot of browsing, but then he stopped browsing.

(2) Goal-Plan Lists, Code View, and the Overview. Most students used the
goal-plan list (buckets) and the code view for reflection and manipulation. It is
notable that they did not use just one, but it is surprising that they did not use the
overview. Allen was unusual in his use of the overview, because most students
were like Fred, who found it useless. Many students covered up the overview with
other windows and never uncovered it.

(3) Debugging and Other Advanced Features of the GPCeditor. There was little
use of any of the advanced debugging features of the GPCeditor. The Step and
Walk program run options were rarely used, and students did not interact much
with the observe window. The GPCeditor does provide the ability to set break-
points (e.g., temporarily suspend the execution of a program so that the values of
internal data objects can be easily examined or modified) but this feature was not
used.

Other facilities provided by the GPCeditor as tools to support the design process
were rarely used. For example, the plan library provides a search capability, al-
lowing the student to search the plan library for all plans that contain a key-word
phrase in their plan description.

FUTURE DIRECTIONS AND SUMMARY

Changes to the Instructional Environment,
Curriculum, and GPCeditor

The problems described by the case study analyses are not answered by chang-
ing any one portion of the instructional package used in the GPCeditor class. The
pieces of the package interact and require changes to all three components to be
effective.

Changes to the Instructional Environment

The GPCeditor supports students as they learn and do software design, but our
students had trouble learning which features of the GPCeditor should be used in
various stages of the design process. Furthermore, it is unlikely that students will
spontaneously discover certain key aspects of the design process (such as advanced
debugging strategies or the use of alternative designs) without explicit instruction.
The question is how to demonstrate the process of software design used by expert
programmers that forms the foundation of the GPCeditor.

KIDS BUILDING ARTIFACTS 95

The question can be addressed most effectively by having the instructor model
the use of the GPCeditor by solving problems similar to those given to the stu-
dents. During this modeling the instructor would be expected to make explicit the
rationale for using specific features of the GPCeditor. This would enable students
to better realize how the instructor’s actions in solving problems can be brought to
bear on the problems they are attempting to solve.

Changes to the Curriculum.

The current focus of the GPCeditor curriculum is based on the analytical skills
of decomposition and the synthesis skills of composition. Though the goal-plan
approach is covered in a strong fashion, the curriculum does not talk about reflec-
tion, heuristics, and why the GPCeditor tools should be used. The curriculum
needs to cover this material to enable learning of these design concepts.

The assigned programming tasks in the curriculum are not intrinsically motivat-
ing. They were designed to teach students to create the sorts of effects and inter-
faces that users encountered on the Macintosh. The assumption was that students
would be interested in creating programs like those that they were using. Although
this was effective for some students, it was not especially motivating for others.
More motivating tasks might be those grounded in real-world problems (Collins,
1988; Harel and Papert, 1990).

Changes to the GPCeditor

The GPCeditor currently provides reasonable support to one type of student. It
needs to change to provide a wider range of support for individual students (both
low- and high-ability students) and to enhance the instruction and the curriculum.

A needed enhancement to the GPCeditor is adaptable scaffolding. The existing
scaffolding of the GPCeditor, as exemplified by the strict process control of the
student in the design process, is fixed. When first using the GPCeditor, the strict
process control provides a structure that enables the student to handle the complex-
ities of the design. As the student’s skill grows and they become more expert-like
in their problem-solving process, the strict process control can impede the student.
The scaffolding of the GPCeditor needs to fade in such a way as to provide a less
strict framework for the solution of problems.

Additional support the students might find helpful includes:

* Prompts that could be added to the GPCeditor to provide more explicit sup-
port for process learning. Example prompts might inform students when they
should reflect or suggest what they might be thinking about for effective problem
solving (Polya, 1945).

® Suggestions by the GPCeditor of plans, strategies, and heuristics, if it were
aware of the kind of program being worked on. This kind of task-specific support
might be useful as low-level scaffolding.

® New representations that could be added to insure complete coverage of the
design process. In particular, tools could be created to ease the process of tracking
data objects and of recalling past activity.

We do not anticipate that the implementation of adaptable scaffolding and ad-
vanced design support will be based solely on students’ interactions with the
GPCeditor. Rather, we expect to provide tools within the GPCeditor that aliow the

96 TOOLS FOR NOVICE DESIGNERS

student with the advice of the instructor to customize the environment for a given
student. Ultimately, we plan to provide a set of customization tools to the students
themselves for more complete control over their own design process.

Summary

The GPCeditor has shown the validity of using computers as design support
environments (DSEs) for students. The support provided in the GPCeditor has
enabled the students to go beyond what they might achieve in a typical program-
ming environment, to develop complex and interesting artifacts that motivate them
and provide a focus for their learning.

We see DSEs as being the next stage in the evolution of computer-aided design
(CAD) environments. Students are just one kind of novice engaged in design. The
computer has made many design domains available to users, such as publishing
and even architectural design. These domains are now available because the com-
puter has taken over the mechanical skills previously necessary to work in that
domain. However, design in these domains is more than simply mechanics—
experts in these domains have knowledge structures and skills that make them
capable of working on complex artifacts. For design novices to be at all successful
in designing in these new domains, we must attempt to provide some of this expert
knowledge in the form of design support in the environment.

The GPCeditor has provided useful information in our first pass at providing
DSEs for students. Clearly, additional factors of instruction, curriculum, and the
interaction with the environment must be considered and used to enhance the final
result. Nevertheless, the direction is also clear that providing support for student
design activities is key to making project-based learning a reality in the classroom.

ACKNOWLEDGMENTS

The GPCeditor was designed by Ken Ewing at Yale University. A team of
programmers completed implementation at the University of Michigan: Luke
Hohmann, Dave Koziol, Dan O’Leary, Charles Weaver, and Mark Guzdial. Luke
Hohmann has maintained and updated the environment for the last three years.

REFERENCES

Adelson, B., and E. Soloway, *A cognitive model of software design,”” Technical Report #342, Cogni-
tion and Programming Project. Yale University, New Haven, CT, 1984.

Brown, A. L., J. D. Bransford, R. A. Ferrara, and J. C. Campione, “‘Learning, remembering, and
understanding,” in W. Kessen (ed.), Handbook of child psychology: Cognitive development, 17—
166. New York: Wiley, 1983.

Collins, A., ““Cognitive apprenticeship and instructional technology,”” Technical Report #6899. Cam-
bridge, MA: Bolt, Beranck, Newman, 1988.

Corno, L., and R. Snow, *‘Adapting teaching to individual differences among learners,” in M. Wit-
trock, Handbook of research on teaching, pp. 605-629. New York: Macmillan, 1986.

Farnham-Diggory, S., Schooling. Cambridge, MA: Harvard University Press, 1990.

Guindon, R., and B. Curtis, *‘Control of cognitive processes during software design: What tools are
needed?” in CHI'88: Conference Proceedings: Special Issue of the ACM/SIGCHI Bulletin, 263-
268, 1988.

Harel, 1. Software design for learning: Children 's construction of meaning for fractions and LOGO
programming, Ph.D. dissertation, MIT Media Technology Laboratory, 1988.

Hayes, J. R., and L. S. Flower. “Identifying the organization of writing processes.” In L. W. Gregg
and E. R. Steinberg (eds.), Cognitive processes in writing, Hillsdale, NJ: Erlbaum, 1980.

KIDS BUILDING ARTIFACTS 97

Jefferies, R., A. A. Turner, P. G. Polson, and M. E. Atwood, *‘The processes involved in designing
software,” in J. R. Anderson (ed.), Cognitive skills and their acquisition, pp. 255-283. Hillsdale,
NJ: Erlbaum, 1981.

Larkin, J. H., and H. A. Simon, **Why a diagram is (sometimes) worth ten thousand words,”” Cogni-
tive Science, 11:65-99, 1987.

Paris, S. G., and P. Winograd, ‘“‘How metacognition can promote academic learning and instruction,”
in B. F. Jones and L. 1dol (eds.), in Dimensions of thinking and cognitive instruction. Hillsdale, NJ:
Erlbaum, 1989.

Parnas, D., “*On the criteria to be used in decomposing systems into modules,” Communications of the
ACM, 15(2):1053-1058, 1972.

Pea, R. D., and D. M. Kurland, “‘On the cognitive effects of learning computer programming,” in
R. D. Pea and K. Sheingold (eds.), Mirrors of minds, Norwood, NJ: Ablex, 1986.

Polya, G., How 1o solve it: A new aspect of mathematical method, Princeton, NJ: Princeton University
Press, 1945.

Simon, H. A. The sciences of the artificial, Cambridge, MA: MIT Press, 1969.

Soloway, E., and K. Ehrlich, *Empirical studies of programming knowledge,” IEEE Transactions on
Software Engineering, 10(5):595-609, 1984.

Spohrer, J. C. MARCEL: A generate-test-and-debug (GTD) impasse/repair model of student program-
mers, Ph.D. dissertation, YALEU/CSD/RR #687, Yale University, New Haven, CT, 1989.

Spohrer, J. C., and E. Soloway, ‘*Putting it all together is hard for novice programmers,’’ in Proceed-
ings of the IEEE International Conference on Systems, Man, and Cybernetics. Tucson, AZ, pp.
728-734.

NOTES

1. The skill of defining a task in terms of subtasks is modular decomposition, which reduces complex-
ity of a large task by allowing the designer to concentrate on solving smajler, more manageable
component tasks. Design researchers emphasize modular decomposition as key to coping with
design complexity (e.g., Parnas, 1972).

2. Highly Interactive Computing Environments Research Group, directed by Professor Elliot Soloway
at the University of Michigan Electrical Enginecring and Computer Science Department.

3. The GPCeditor runs on Apple Macintosh computers with at least 2.5 Mb of memory, a hard disk,
and a large monitor. The version used in this study required a 19-inch monitor, but a new version
can be run on 13-inch monitors.

. Through a donation from Apple Computer, eleven stations were placed in Community High School.

. The class now meets three days a week for ninety minutes, with optional after-school sessions.

. During the first month or two of the first semester using the GPCeditor, three instructors were
present daily (the class instructor, Soloway, and Yasmin Kafai, one of his research assistants). Once
a style of interaction was established, the number of instructors dropped to two (the class instructor
and a research assistant).

7. Procedures have since been implemented in the GPCeditor.

8. Student names have been changed to protect subject anonymity.

AW b

APPENDIX 1: FIRST PROTOCOL WORKSHEET

Making Faces with the GPCeditor

This worksheet is a review of concepts already visited with the GPCeditor.
Here you’ll put them together.

There are several components to this worksheet. Please read over the entire
worksheet, then begin at Part 1. Do as much as you can of the worksheet.

Part I: Drawing a Face (or Maybe a Bowling Ball)

You've drawn circles, lines, ovals, and rectangles in this class, sometimes as
frames and sometimes painted. If you combine a big framed circle with three
smaller, painted circles (two for the eyes and one for the mouth) you can draw a
face as seen below.

98 TOOLS FOR NOVICE DESIGNERS

(It either looks like Mr. Bill, the clay figure from ‘‘Saturday Night Live,” or a
bowling ball with oddly spaced holes.)
Write A Program that draws this figure, then save the program as PartOne.

Part 1I: Draw Two Faces

The mouth can be made with a circle, above, or it could be made with other
objects. For example, here’s the mouth made with a circle and a new one made

with moveto and lineto.

DS

Or, if you’re not comfortable with moveto and lineto, you could draw the second
face using paintoval.

D&

Write A Program that draws two faces on the screen, one next to the other. The
leftmost face should be the face with a paintcircle mouth. The rightmost face has a
mouth drawn either with moveto and lineto or with paintoval. When you're fin-
ished, save the program as PartTwo.

KIDS BUILDING ARTIFACTS 99

Part 1I1. Get the User’s Name

Now you'll write an entirely new program.

Earlier in class you wrote the Echo program. This program asked the user to
type something, then displayed whatever the user typed. The program looked like
this:

program echo;
var

echo: string;

begin
readln (echo);
writeln (echo);

end.

Write a program like Echo, but reading and writing the user’s name. Write the
program to ask the user for their name and read their name as input. Then, display
the word “‘Hello” and their name (on two separate lines.)

The program says: What is your name?
You type: Mark

The program says: Hello
Mark

Part IV: Making Friendly Faces
Now, write a program that contains parts of both programs.

First ask the user for their name (in the text window).
Then draw the faces (in the graphics window).
And finally display ‘““Hello” and their name (in the text window).

Be sure that you get the order correct: ask for the name, then draw the faces, then
say hello.
You may wish to use the library to copy plans between programs.

APPENDIX 2: EVALUATION OF CASE STUDIES

Each of the four case study students (Sue, Allen, Lois, and Fred) is discussed in
some detail in the following subsections. The data for each are discussed under
each of the study foci.

As representative of the programs that the students produced, each student’s
“‘Challenge” program is presented. This program involved extending a program
written earlier by the students called **Triangles” which drew a moiré triangle by
using multiple lines in an animation in which the triangle grew across the screen
horizontally. The challenge was to draw four triangles so as to create a rectangle:
the original horizontal triangle to form the top, then a vertical triangle to form the
right side, another horizontal for the bottom, and a final vertical triangle for the
left side. The instructions for *“Triangles’ and ““‘Challenge” are in Figures 4 and

100 TOOLS FOR NOVICE DESIGNERS

Figure 4 Instructions for Program 7: Triangles. Write a program
that produces a figure like the one shown above. To do
this, you will need to use both moveto and lineto
and the whi Le loop. Hint: Each line is drawn between a
constant point and a variable point. The variable point
varies only horizontally. Vary the horizontal position on
this point according to a number that the user inputs
when the program runs. For example, this figure was
produced when a user input the number 3.

5. These programs appear in the worksheet ‘““Moving Pictures in the GPCeditor,”
the seventh worksheet in the GPCeditor series of twenty-seven worksheets.

For each student, the complete Pascal program and a portion of the goal-plan
decomposition is presented. The decomposition is presented as it would appear in
the overview window. Plan names that begin with ‘“P:*’ are plan groupings that
are created by the student, and all other plans are taken from the library. Goals and
plans appear left-to-right, top-to-bottom in the order in which the student created
them.

Sue
Student Characteristics

Sue entered the GPCeditor class as a junior with a 3.2 GPA. She had done some
programming in Basic. She admitted that she was taking the class only to have a
computer class on her high school transcript. In her initial interview, she ex-
pressed frustration in her experience with computers (verbal comment by the re-
searcher appear in italics).

Do you like computers?
“If I know what I'm doing, I like them. If I don’t understand, I get frustrated.”
Is that (frustration) the hardest part of using computers?

““Yeah, just, in simple terms, I don’t know, trying to express the ideas that you want, and trying
to get it onto the screen, trying to figure out what steps you have to do to get things onto the
computer or whatever.”

KIDS BUILDING ARTIFACTS 101

Figure 5 Instructions for Program 8:
Challenge. Enhance your Triangles
program to draw lines around all four
sides of the screen, clockwise. See
figure. Hint: You will need four
whi Le loops, one for drawing each
side.

Use of Reflection and Explicit Planning

Sue did not reflect on the program until late in the task, when it was difficult to
backtrack. For example, she would question her choice of goal or plan when
instantiating the plan for the program in her protocols. This did not improve
during the course of the semester.

She did not use explicit planning. She never wrote anything down, nor did she
even make a verbal statement of what she was planning on doing. Not surprisingly,

she often got lost in her protocols:

«“Oh! What did I do? Oh, I'll have to change that. The vertical. 1 forgot what I changed.”

Decomposition

One of Sue’s greatest difficulties was determining her first goal when faced
with a new program. When given a new assignment, she would literally sit in front
of her computer for an hour or more without creating any new goals or making any
notes. She took longer than the other students and required extensive help. On a
typical program, Sue took over three times as long as other students, ten days
versus three days, and she mentioned in her journal receiving help on four of those
ten days.

Part of the reason that she took so much longer in writing her programs was
that she took great pains to have good hierarchical decomposition and plan reuse in
her program, going so far as to redesign programs in order to achieve these goals.

102 TOOLS FOR NOVICE DESIGNERS

The usage trace files show that she saved ten plans to the library during the course
of the semester, more than twice as many as any other student in the class. The
following quote from her journal exemplifies the effort that she went through for
good decomposition and plan reuse.

*1 retyped the Challenge so that 1 could have Hierarchy and reuse some of the same plans and
goals. It really wasn't that hard because I knew what 1 was doing but now 1 have to change
things so that it will make sense for the next loop in the programming.”

During protocols, her use of hierarchy was rote. She announced during her
second protocol that she was using “‘plenty of hierarchy.”” However, she only
decomposed GetInput plans and bodies of while=do loops, two purposes
explicitly suggested in the worksheets. She never used a new level of hierarchy,
for example, to identify a logical partition in the program.

Sue's first protocol session was marked by a lack of planning. She did not
reflect on the task and her process early, but late when it was difficult to backtrack,
for example, while instantiating a plan for a particular program. In particular, she
lost track of data objects and her rationale for the changes she was making. She
created no hierarchical decomposition. In one of the programs in the second proto-
col, she was asked to write the result of a calculation. She created a new level of
hierarchy, placed a wri te Ln within it to write the result, then placed a readln
immediately afterward—as if she was creating a Get Input plan. She did not
realize that one could use a writeln outside of a Get Input plan and without a
read Ln following.

Composition

Sue had little trouble composing her plans, but she had significant problems
matching data objects. Though she chose good, descriptive names for her data
objects, she still had difficulty matching the function of the data object to the
name. In her second protocol, for example, she had variables named horizontal
and vertical, but she forgot how this related to the output.

*1 don't know—I"m just trying to figure out. Can I just match this? (Pointing with her mouse to
a data object.) Left and right would be horizontal, up and down would be vertical? What should
I do? I don’t know."”

Debugging

Her debugging strategies were typical for a novice programmer but did not
improve through the semester. She made random changes that dealt only with
surface characteristics of the program (e.g., changing the order of two plans) as
opposed to reconstructing portions of the program (e.g., removing and creating a
new goal). The following scene is from a debugging episode in her first protocol
session.

(Sue stares at the code view, clicking on various pieces.)

“Hmm, I'm not sure . . .’

(She clicks on a plan to draw a circle, moves it one statemens further down in the program—a
change that has no effect on execution. She runs the program and sees no difference. She clicks
on the code view again.)

““I had it right before.”

KIDS BUILDING ARTIFACTS 103

(Clicks on the output graphics window.)
“*‘Maybe it's here.”
(She changes the value of a data object, then re-runs the program.)

**Okay, that did make a difference.”

GPCeditor Use

Sue made more use of the library than any other student. She browsed the
library and checked plan descriptions frequently. As mentioned, she saved and
reused plans more than any other student.

She made little use of the alternative representations. Protocols and usage trace
files showed no use of the overview and little use of the goal-plan buckets. Her
primary program representation was the code view.

Sample Program

Sue’s “‘Challenge”” program and decomposition appear in Exhibit A. The pro-
gram has a nice structure, is understandable, and is well composed. She uses
descriptive data object names. Her program is not as efficient as it might be. In
fact, she includes unnecessary components. For example, not only does she unnec-
essarily repeat center : = one_hundred; within every whi le—do loop
(unnecessary because center is never changed), the variable center is never
used at all. The repetitive nature of the program is highlighted in the identical
structure used in drawing each triangle of the challenge.

Her decomposition is modular, easily understood, and easily modified. Each
triangle in the challenge is made from the same three parts: a while-doloop, an
expression to test for ending the loop (which she names prompt), and a body
named while loop. This structure is repeated through all four components,
and the whi le Loop plan is reused in each case. Note that the while loop
plan is not simply reused at each case—it is also tailored to fit the different require-
ments of each of the loops. Though she did not place all three components in one
plan grouping, she does seem to understand the basic notion of modular decompo-
sition and plan reuse.

Allen
Student Characteristics

Allen took the GPCeditor class because he was interested in computers. He had
studied Basic for six weeks when he was in sixth grade. He took the class as a
sophomore with a 3.0 GPA.

Use of Reflection and Explicit Planning

In his first protocol, Allen made frequent verbal statements of what he was
going to do and what he was thinking about. In these examples from the first
protocol, he makes explicit verbal plans, makes use of pencil and paper to plan
what he is doing, and makes use of the overview window for reflection.

“How do we do this? Get their name, then draw the faces, and finally display hello and their
name.”

“The vertical would be . . . Let's draw a picture for a second.”

104 TOOLS FOR NOVICE DESIGNERS

(While clicking in the overview window) 1 always like to see what's going on over here, just to
see where T am, what it looks like.”

Reflection and planning were not explicit in his second and third protocols.
However, he completed all of his programs correctly in both of those protocols,
and in less time than anyone else. It may be that the programs were too easy for
him to demand reflection or explicit planning, or that these processes were inter-
nalized and were no longer being verbalized.

Decomposition

Allen used and seemed to understand the need for hierarchical decomposition
from the start. In his first protocol, he created a plan grouping and explained its
purpose to the researcher.

‘Let’s add a little hierarchy here . . ."
Why did you create that?

**So I can put all the circles, the face part in that. And then if I pui the face part in that, then I
can just . . . add the different parts of the program, add those in a different part.”

Allen’s other protocol programs and assigned programs used strange combina-
tions of hierarchy and ungrouped plans. In his second protocol session, programs
that he began with a comment like ‘‘this is easy” invariably had little or no
hierarchy (i.e., he built his program entirely out of ungrouped Pascal primitives as
opposed to defining levels of hierarchy.) However, when he encountered a pro-
gram bug, for example, he would often define a new level of hierarchy and decom-
pose the difficult plan there. For Allen, hierarchy seemed to be a method of coping
with a complex problem.

It may be that Allen defined a new level of hierarchy in order to try an alterna-
tive design to meet the problem at hand. Because for Allen building a plan was
more easily accomplished “‘from scratch,” previously stored plans in his mental
library were constructed in the problem-solving process. However, new plans, or
alternative designs, required a new level of hierarchy to deal with the complexity.

Composition

Allen never exhibited any problems with ordering and composing plans or with
instantiating plans with data. This is unusual because his names for variables were
obtuse and seemed to lack any connection with their function.

Debugging

Allen’s debugging strategies were difficult to observe because he made few
mistakes. As mentioned, he used hierarchy as a debugging technique in his second
protocol. By the end of the semester, Allen’s process was expert-like. He made
few mistakes in his third protocol session. His usage trace files showed few pro-
gram modifications and few program executions.

During the first four weeks of the semester, Allen ran his programs an average
of fourteen times a day. However, during the last four weeks (when he still used
the GPCeditor before going on to Lightspeed), he ran his programs only three
times a day. It may be that many repeated runs early in the semester helped solidify
many of the design processes, thereby reducing the need for large numbers of runs
at the end of the semester.

KIDS BUILDING ARTIFACTS 105

GPCeditor Use

Allen made little use of the plan library other than access to Pascal primitives.
Over the course of the entire semester, Allen’s usage trace files show that he saved
only one plan to the library. When asked why he never reused plans, he replied
that it was ‘‘easier to build it up [from scratch].”

Allen did make extensive use of all the representations. He seemed to use the
goal-plan buckets to select goals and plans for operations and to navigate the
hierarchy, to use the code view for reflection during debugging, and to use the
overview for reflection during decomposition.

Sample Program

Allen’s program and decomposition appear in Exhibit B. His program is not as
understandable as Sue’s. His poor naming and duplication of data objects is imme-
diately obvious. His variables are named 2, B, A, and x. He has three constants,
vert_400, vert_400_b, and con_400, all of whose value is 400.0. His
program does not make the repetitive nature of the program clear—the first loop of
his program has a distinctly different construction from the latter three.

His decomposition is nearly indecipherable, with poor naming and mixed struc-
ture. Under a plan named inativate, he has the moveto and lineto
(graphics primitives for drawing lines) of the first loop. He groups all but the first
of the whi Le—do loops in one plan named buncho loops. The meaning of
goals named verblenumber and vernumB is unclear.

Lois
Student Characteristics

Lois took the GPCeditor class as a senior (3.7 GPA) interested in studying art.
She applied for the class ““to get an edge on college applications and stuff.”” She
had typed in some programs from magazines in Basic a few times. One of her first
comments on computers in the interview was how a computer once lost her data.

Do you like computers?

I don't really know them. I never use them. I've never programmed before . . . They organize
and store stuff. They can also mess things up. I lost a bunch of stuff once. We worked for two
weeks to get it back.”

At the midsemester interview, she admitted that she didn’t like the GPCeditor:
“It’s interesting. But it’s not one of my favorite things.”

Use of Reflection and Explicit Planning

Lois was the only student who explicitly asked for her notebook containing her
worksheets during her protocol. She used her notes to identify programs and plans
that were similar to one she was facing.

“I'm looking through Moving Pictures [worksheet] and can’t decide if I should take a whole
program or part. COMET, SUPERNOVA [names of programs in that worksheet], it does in-
crease the radius, doesn’t it? I don’t want to change the size of the square . . . Okay, I'll have to
use a moveto.”

106 TOOLS FOR NOVICE DESIGNERS

Lois rcflected early and often in the design process. She often paused to think
about her program and how she was planning to complete it.

Decomposition

At the beginning of the semester, Lois had a hard time decomposing tasks and
choosing the plans for the goals that she had chosen. Her comments in her diary,
and the instructor’s comments to the researcher, suggest that she received personal
instruction almost daily. However, by midsemester, she appreciated and used hier-
archical decomposition in her programs. In her midsemester interview, she ex-
plained why she liked it:

**Actually, I think [hierarchy is) useful. I'll use it to sort of organize, so that if I have to change,
like, values for something. Like for the face. 1 did the eyes in one thing and the nose in one
thing. So if I needed to change something, I could go try to find it. It worked.”

Lois had very good strategies for beginning programs. In her protocol, for
example, she was asked to draw a square and move it (using animation techniques)
across the screen. The first thing she did after reading the task assignment was to
write a program to draw the square. Though she was unsure how to do the anima-
tion, she knew how to perform that part of the program, so her heuristic was to do
the part that she knew how to do, and to develop the program from there.

“‘Oh, now there’s a square . . . now I just have to move it? This is what I don’t know how to
do. . . . It would help if I could have my notes, my old worksheets.
Composition

Lois had no problems ordering and composing plans. She used well-named data
objects and seemed to have little trouble in finding data objects.

Debugging

Soon after the midsemester interview, Lois became very interested in one of a
the assigned graphics programs, “‘Triangles.”” During the first eight weeks of
class, Lois ran her programs an average of thirteen times per day. While working
on “Triangles’’ and the ‘‘Challenge,” she ran her programs an average of thirty-
two times per day.

Her class programs began improving significantly, according to the instructor.
She completed programs as fast or faster than Allen. For example, on one particu-
larly difficult graphics-oriented program, Allen took two days, Fred took two
days, and Lois took one day.

Lois used good debugging strategies during her protocol. Whenever bugs oc-
curred, she stopped writing her program and mentally simulated it, stating predic-
tions for what should happen.

It didn’t work! No problem—I can deal with it . . . I have the framerect first, and it should be
going down. So the right should be 500.”

GPCeditor Use

Lois did not use the library much during the first part of the semester. In fact,
during the midsemester interview, she claimed that she did not know how, though
her usage trace files indicated that she had saved and reused a plan. However, she
began saving, reusing, and tailoring plans by the end of the semester. Lois made

KIDS BUILDING ARTIFACTS 107

little use of alternative representations. She relied mostly on the code view and the
goal-plan buckets.

Sample Program

Lois’s *‘Challenge’ program and decomposition are in Exhibit C. Her program
is well-composed with good data object naming. Her program has the same clear,
repetitive structure of Sue’s program but does not have the unnecessary redun-
dancy that Sue had.

Her decomposition reflects the stage of her learning at the time of the *‘Chal-
lenge” program. She understood hierarchy and plan reuse but had not fully gener-
alized it yet. Her first triangle (drawn horizontally) of the ‘“Challenge’ is created
under the Create the Loop. This same plan is reused and tailored to draw the
other horizontal triangle when achieving the goal Do 3rd Triangle. However,
Lois did not seem to recognize that the Create the Loop plan could be tailored
to draw vertical triangles as well. She used a flat hierarchy for drawing the second
triangle under the plan Init. ValuesZ2, and then repeated the same flat order
of plans to draw the fourth triangle (the other vertical one).

Fred

Student Characteristics

Fred entered the class as a freshman with extensive computer experience. He
already had programmed in Basic, Pascal, and a graphics-oriented version of Pas-
cal called Grasp. However, the longest program he had ever written previous to
this class was only 20 lines long. He took the class because he wanted to learn
more about Pascal.

Use of Reflection and Explicit Planning

Fred began the semester reflecting early and often. In his first protocol, Fred
carefully considered what he should do in the program, stated constraints, and
reflected on his program during debugging. When he found that he was forgetting
what he wanted to do, he asked for pencil and paper to keep notes.

“I'm thinking of doing a paintcircle for the face with two invertcircles for the eyes and mouth.
No, I don’t think I will.”

““The horizontal . . . the vertical should be the same as the second vertical because if they were
different they'd be in the wrong place.”

(Clicks with mouse on right eye of face he's drawn so far.) *If that’s 600 . . . (clicks on left
eye) ‘*And that’s 100, no, 300 . . .”" (Moves mouse arrow up and down where the nose is going
10 be drawn.) *“Then that’s the horizontal. The vertical will be . . . 500. About 500,500 ought
to do it.”

“‘Okay, I'll do a match to see what the numbers actually are . . . Aw, geez, I can’t remember.
Can I have a pencil so I can write some of this down?”

(Unfortunately, his strategy for using pencil-and-paper notes was incomplete. As
he made changes, he forgot to update his notes. When he later modified his pro-
gram based on his now inaccurate notes, he only implemented more bugs.)

108 TOOLS FOR NOVICE DESIGNERS
Decomposition

Fred had little trouble starting programs, but he used none of the decomposition
design techniques discussed in class. He rarely used plan groupings to create new
levels of hierarchy and he never saved a plan to the library during the entire
semester.

At one point in the first protocol, Fred created a new level of hierarchy. But
when he found a bug, he deleted the entire level with several plans defined within
it and then continued writing nonhierarchical code. He did not seem to understand
or trust hierarchy.

Although he did not really take advantage of the structure within the GPCeditor,
Fred seemed to appreciate it. During the midsemester interview, Fred said that he
found goals and plans to be useful.

*I think (the GPCeditor) is okay. The first couple of weeks, 1 thought it was kind of lame, that
goals and plans got in the way. But I can sce that it’s kind of helpful. I can see that in longer
programs, it's kind of helpful.”

Composition

Fred had several problems with composition. During his first protocol, he fre-
quently confused the composition operations. Fred had significant problems with
data handling in both his first and second protocols. He referred to his data objects
in his protocols by their values instead of by their meanings, especially during the
first protocol.

(Pointing at the mouth of his face.) *‘That’s 500. It should be 450. 450 . . . 650. But which is
which? That's 450 (moving mouse up and down) and that’s 650 (moving it side to side). T'll put
down 450 before I forget.”

As the programs grew larger, Fred found it difficult to remember all the compo-
nents and the meaning of terms like horizontal and vertical. While in the first
program of the first protocol, he named his data objects meaningfully (e.g.,
radius and horizontal, but named his data objects in the second program of
the first protocol based on their values (e.g., sevenhundred and four-
hundredfi ftey). This made it more difficult for him to remember the mean-
ing of these data and to use them when instantiating plans for the program.

By the final protocol, he had learned to keep track of his variables, even with
his poor naming schemes. Though he did not verbalize these strategies, he showed
no difficulty in manipulating his data objects. In general, Fred’s programs did
work. In fact, he occasionally exceeded program requirements, adding interesting,
new features.

Debugging

Fred had a great deal of difficulty with debugging. In part, his problem was due
to forgetting data object meanings. In addition, however, he also forgot his goals
in debugging. He would frequently begin work on a bug, switch his focus to a new
bug, and forget about correcting the original bug.

KIDS BUILDING ARTIFACTS 109

GPCeditor Use

Fred never saved a plan to the library, rarely used any hierarchy, and found the
overview useless. In general, he only used the code view and the program output
when building or debugging his programs.

**No, [the overview) gets in the way.”
Do you save things into the library?

**No, I don’t remember how.”

Sample Program

Fred's program and decomposition appear in Exhibit D. His program has a
clear structure that shows the repetitive nature of the task. However, his data
objects are so confused that one wonders how he was able to debug this program.
The constant i ftey has the value of 200.0, the constant one has the value of
5.0, and his variable names are z, y, x, and vari.

His decomposition is almost perfectly flat. He uses a plan grouping once to link
a while—do loop with its test expression. The rest of the program is not hierar-
chically decomposed and is difficult to understand.

EXHIBIT A: SUE’S CHALLENGE PROGRAM
AND DECOMPOSITION

PROGRAM chal lenge;
CONST

one_hundred = 100.0;

write = 'Enter the amount of spaces youwould lLike between the
lines."';

two_hundred = 200.0;

zero = 0.0;

VAR

center : REAL;

read : REAL;
vertical_start : REAL;
Horizontal_start : REAL;
vertical : REAL;
horizontal : REAL;

BEGIN
horizontal := zero;
vertical := zero;
Horizontal_start := two_hundred;
vertical_start : = two_hundred;
WRITELN (write) ;
READLN (read) ;
WHILE (horizontal <= two_hundred) DO
BEGIN
center := one_hundred;
MOVETO (horizontal, vertical);
LINETO (one_hundred, one_hundred);
horizontal : = (horizontal + read);
END;
WHILE (vertical <= two_hundred) DO
BEGIN
center := one_hundred;
MOVETO (horizontal, vertical);
LINETO (one_hundred, one_hundred);
vertical := (vertical + read);
END
WHILE (horizontal > = zero) DO
BEGIN
center := one_hundred;
MOVETO (horizontal, vertical);
LINETO (one_hundred, one_hundred);
horizontal := (horizontal - read);
END;
WHILE (vertical >= zero) DO
BEGIN
center := one_hundred;
MOVETO (horizontal, vertical);
LINETO (one_hundred, one_hundred);
vertical := (vertical - read);
END.

END;

110

(Puas + [EIUOZHOL) = FIUOZLIOY

(peas ¢+) = [EOfLRA)
MR Ay W02y 10 -
(pe3s + U0z
(Pl + [B(1EA) .
o uofpeu:0
(paspum(~au0 PNy "U0)OLANIT b st e N
[IETH)) OO
\ (onsa ‘EIN0zEOYOLIAON
(mopBa E_._Bv%.—h%goﬁ olaow 30
PAPUNY W0 =; D0 Ry
U0 \ =11~ H))
\ dooy apym d
doof ajjym dooy 3jjys:0

(POIpURYOM) w> [BIVOZLS0Y)

7doo| ojym:n
: epﬁsﬁozmme_w“w,_w Wwoud :0
(YY) / op-afum opaue
2ol 1O op 3y D
du1 190 saiqeLma 9ZIENILY

Za8uaje) ‘umsBosq

111

EXHIBIT B: ALLEN’S CHALLENGE PROGRAM
AND DECOMPOSITION

PROGRAM chalgenge;

CONST
cont_0 = 0.0;
vert_400 -= 400.0;
vert_400_b = 400.0;
five = 5.0;
vert_linto = 0.0;
vertcal = 200.0;
hort = 200.0;
con_400 = 400.0;

VAR
z : REAL;
B : REAL;
A : REAL;
x : REAL;

BEGIN

WHILE (x < con_400) DO

BEGIN

MOVETO (hort, vertcal);
LINETO (x, vert_linto);
x := (x + five);
END
A := con_400;
B := con_400_b;
WHILE (z < vert_400) DO
BEGIN
MOVETO (hort, vertcal);
LINETO (con_400, 2);
2:= (z + five);
END;
WHILE (A > cont_0) DO
BEGIN
MOVETO (hort, vertcal);
LINETO (A, vert_Llinto);
Az= (A - five);
END;
WHILE (8 > vert_linto) DO
BEGIN
MOVETO (hort, vertcal);
LINETO (cont_0, B);
B:= (B - five);
END;

END.

112

op-oUy (A +x) MY+ x=X
0Py Op-ATYM 3< D sonbg ;D

S
YY) :asa 4_ 00y 34 >2) 3doo| oyoung :d E_sca.%o_ d
U) sdoo| oyumg 10 uopiouny dooy 10

N

8uaBeyd (wridoyg

(owy"iRA *X)OLANIT (BIUIA WOWOLIAONW

(00 U0 > X)
JIQUINUIQIAA 10

nuy ;0 1AW D

/\

AvARWLL id
ABADSY] IO

op-ajtym
oppm 1D

113

EXHIBIT C: LOIS’S CHALLENGE PROGRAM
AND DECOMPOSITION

PROGRAM Doing_the_Chaltienge;

CONST
five = 5.0;
four_hundred = 400.0;
two_hundred = 200.0;
zero = 0.0;

VAR
final_vert : REAL;
final_hori : REAL;

vert : REAL;
hori : REAL;
BEGIN

hori := zero;
vert := zero;
final_hori := two_hundred;
final_vert : = two_hundred;
WHILE (hori <= four_hundred) DO
BEGIN
MOVETO (hori, vert);
LINETO (final_hori, final_vert);
hori := Chori + five);
END
WHILE (vert < = four_hundred) DO
BEGIN
MOVETO (hori, vert);
LINETO (final_hori, final_vert);
vert := (vert + five);
END
WHILE (hori >= zero) DO
BEGIN
MOVETO (hori, vert);
LINETO (final_hori, final_vert);
hori := Chori + five);
END
WHILE (vert >= zero) DO
BEGIN
MOVETO (hori, vert);
LINETO (final_hori, final_vert);
vert := (vert — five);
END;

END.

114

(3ay +w3A) 4
+8sadxa :p

(3AY + LOA) = LA
u3A D (3ay + woy)
S+ 1oy 0

(Paspuny{In0j => L1A)
saud . (3ay + poy) =: oy -
Us: 13 189} .O ES :-UEEC_ uo hE) E& ._L%ECVEE)—
wiod reut) olau:p

(L2 ‘BOWYQIIAON
\ wiod Supsns ovaow 1D

op-aljym
TOP3Ym D

(A™EuY *Boy~VULOLANIT

. .A”cL-..J.nW TO1U D
\\G) ,ﬂvh»im (434 ‘HOWQLIAON
7 019A0U 30 dodt apicel*d
- el dooj dpisut ;9
¥ Ooug| :D .
(PRrpuIST0) => HOY)
(s “HOYOLIAOW (paojmel Inq u0}ss3.dxd 1531 10
¥ 0laa0w D dooj a1 sma)
3340 A7) op-ajtym
(0 =< uan) / doo| 3|iym :0
dooyj af Aw Zsonjea 1y :d dooj 3y a1Ban g sanfea Juizsrenmun :d
AT g 0G0 IRNEA NULD dooj ay 3w :p sanma Suizieniul :0

N | _——

a8uajey) "o~ 3ujoq sweiBosd

115

EXHIBIT D: FRED’S CHALLENGE PROGRAM
AND DECOMPOSITION

PROGRAM Chal tange;

CONST
zero = 0.0;
fiftey = 200.0;
onehundred = 400.0;
one = 5.0;

VAR
z : REAL;
y : REAL;
plusten : REAL;
z : REAL;
vari : REAL;

BEGIN
vari := one;
WHILE (vari < onehundred) DO
BEGIN
MOVETO (fiftey, fiftey);
LINETO (x, onehundred);
vari := (vari + one);
x c= (x + one);
END
plusten : = onehundred;
WHILE (plusten > = zero) DO
BEGIN
MOVETO (fiftey, fiftey);
LINETO (onehundred, plusten);
plusten := (plusten - one);
END
y := onehundred;
WHILE (y >= zero) DO
BEGIN
MOVETO (fiftey, fiftey);
LINETO (y, zero);
y := (y - one);
END
2 := zero;
WHILE (z <= onehundred) DO
BEGIN
MOVETO (fiftey, fiftey);
LINETO (zero, 2);
z:= (2 + one);
END;

END.

116

(PRpUNYDUO > LRA) op-aym
BN Tssd| 10 opTolym :0

OPHMM (WO +X) (WO+X)mIX (u04 HBA) (U0 + pua) <

HUa WO=:WUA doofid (Pupunyu0 'IOLANIT (K1Y "KOUOLIAON
o000 dooj souy 0 [001:0 1-001=¥:D -E» 0

/.E,o_a, v P o] :0 01A0W 0

om.a__EO Eu._uo.&

117

—

R »
P TRR N

ettt

LEARNING TO DESIGN,
DESIGNING TO LEARN:
Using Technology
to Transform
the Curriculum

Edited by
Diane P. Balestri

Princeton University

Stephen C. Ehrmann
The Annenberg/CPB Project

David L. Ferguson
State University of New York-Stony Brook

Taylor & Francis

Washington ® Philadelphia ® London

g

