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ABSTRACT 
Most research in primary and secondary computing education has 
focused on understanding learners within formal classroom 
communities, leaving aside the growing number of promising 
informal online programming communities where young learners 
contribute, comment, and collaborate on programs. In this paper, 
we examined trends in computational participation in Scratch, an 
online community with over 1 million registered youth designers 
primarily 11-18 years of age. Drawing on a random sample of 
5,000 youth programmers and their activities over three months in 
early 2012, we examined the quantity of programming concepts 
used in projects in relation to level of participation, gender, and 
account age of Scratch programmers. Latent class analyses 
revealed four unique groups of programmers. While there was no 
significant link between level of online participation, ranging 
from low to high, and level of programming sophistication, the 
exception was a small group of highly engaged users who were 
most likely to use more complex programming concepts. Groups 
who only used few of the more sophisticated programming 
concepts, such as Booleans, variables and operators, were 
identified as Scratch users new to the site and girls. In the 
discussion we address the challenges of analyzing young learners’ 
programming in informal online communities and opportunities 
for designing more equitable computational participation.  

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education  

Keywords 
Computer science education, collaborative learning, social 
networking sites 

1. INTRODUCTION 
Most efforts in primary and secondary computing education have 
focused on understanding learners within formal learning 
communities of school classrooms. Some research has examined 

learners’ conceptions of programming—or the lack thereof [40]. 
Other efforts have focused on understanding novices’ challenges 
with particular programming concepts, such as loops, 
conditionals, and data structures [36; 38] and focused on 
designing programming environments and tools that facilitate the 
mechanics of programming [27]. Instructional efforts have also 
focused on the design of programming tasks and developed 
approaches around more authentic and situated approaches, such 
as game design [21] and media-based computing [34]. Likewise 
social arrangements in classrooms such as pair programming [10], 
peer pedagogy [9] and even collaborative board games [2] have 
been found successful for beginning learners.  

However, there is a growing interest in understanding learners in 
informal online communities where programming is a choice and 
participants contribute, comment, and collaborate on programs 
inspired by open source efforts [1; 19]. Unlike formal classroom 
communities, here participants often learn programming on their 
own; they program when they want, what they want, and with 
whom they want, with the potential to learn from and with others 
without the explicit guidance and support of a teacher. An early 
example of this type of community included MOOSE Crossing 
[7] while more recent examples include Kodu and Scratch. Most 
of the work to date has focused on Scratch (Resnick et al., 2009), 
by far the largest online programming community focused on 
youth, where young programmers post Scratch programs that they 
create, leave comments on each others’ work, seek and provide 
help on forums, view, and download others’ programs. To 
highlight the social dynamics of learning programming in these 
youth amateur communities, we have chosen to frame them as 
“computational participation” [22]. 

In framing interactions and contributions as computational 
participation, we move away from a predominantly individualistic 
view of computing to one that includes a greater focus on the 
underlying sociological and cultural dimensions in learning to 
code, expanding computational thinking to include social 
participation and personal expression. Most of the work in this 
area regarding youth has been primarily ethnographic in nature 
focusing on case studies of young designers within a large online 
community of programmers [3; 8]. With the recent comeback of 
coding and interest in promoting programming as a new literacy 
[22], these informal learning communities are growing in 
popularity (e.g., Scratch has 90,000 active monthly users as of 
July 2014 up from 20,000 two years ago), little is known about 
these learners. Our own initial efforts in studying these 
environments have examined levels of participation [12] and 
commenting [15], but nothing so far has focused on identifying 
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the quantity and quality of programming that we can observe on 
such a massive scale. 

In this paper, we examine youths’ computational participation by 
choice—‘in the wild’—and the type of self-organized activities 
that emerged with the recent arrival of online networking 
communities which have opened alternative paths for youth to 
become engaged in programming. With over seven million 
projects shared since its public launch in 2007, the Scratch 
website is a vibrant online community with 8,000-10,000 new 
projects being uploaded every day. Scratch is also a media-rich 
programming language that allows youth to design, share, and 
remix software programs in the form of games, stories, and 
animations [35]. For the purpose of our study, we drew on a 
random sample of 5,000 youth programmers and their activities 
over three months in early 2012, examining the quantity of 
programming concepts used in projects in relation to the level of 
participation, gender, and length of membership of Scratch 
programmers. We address the following three research questions: 
(1) What broad patterns exist in terms of the programming 
concepts kids use in the computer programs they share on the 
Scratch.mit.edu website? What kinds of commands do kids use in 
the programs they share ‘in the wild’? (2) Are there any 
relationships between the quality of computer programs kids share 
and their gender or their length of membership (account lifetime) 
on the Scratch website? Finally, (3) Does the way someone 
participates in the Scratch website relate in any way to the 
programming content of their programs? In other words, are there 
any relationships between the users’ programming profiles and 
their participation profiles? In the discussion we address the 
challenges of analyzing young learners’ programming by choice 
and opportunities for designing more equitable computational 
participation in formal and informal online communities. 

2. BACKGROUND 
Our research to understand ‘computational participation’ of youth 
programming in informal communities is framed by a perspective 
of computing that moves away from a predominantly 
individualistic view of computing to one that includes a greater 
focus on the underlying sociological and cultural dimensions in 
learning to code, expanding computational thinking to include 
social participation and personal expression. “Computational 
participation… is the ability to solve problems with others, design 
systems for and with others, and understand the cultural and social 
nature of human behavior by drawing on concepts, practices, and 
perspectives fundamental to computer science” (p. 6, [22]). With 
“computational participation” we connect to recent efforts [17] to 
promote computational thinking that have been defined as all 
“aspects of designing systems, solving problems, and 
understanding human behaviors” that highlight the contributions 
of computer science (p. 6, [39]). By including this social 
dimension of computing, we leverage connectivity inherent in the 
digital world of the 21st century that becomes particularly 
manifest in the massive online social networking forums [16] 
where users post programs that they have made. In these interest-
driven communities youth come together not only to hang out and 
mess around [2] but also to create, remix, and share their code.  

Yet only a few studies have examined computational participation 
in these interest-driven communities, offline or online. One prime 
area to study computational participation at a massive level is on 
the Scratch website itself, as the most prominent and well-
populated website where novice programmers and kids can share, 
comment on, and socialize around programmed Scratch projects 
[35]. So far, the research on computational participation in 

Scratch [22] has examined subsets of smaller, interest-driven 
communities, collabs, and individuals, in particular the prominent 
practice of remixing (editing and re-sharing others’ projects) on 
the site, and also engaged in studies of interventions intended to 
support time-limited small-group collaboration. Most of this 
research has either been more observational and used case studies 
[5], though some studies have been more experimental in nature 
and have taken place within the larger online Scratch community, 
such as Monroy-Hernandez’s broad study of remixing [31].  

Our own first step in understanding broad trends of programming 
and participation on the Scratch website focused on participation 
profiles, identifying how users engaged in downloading, 
commenting, remixing, “loving,” or friending in the online 
Scratch community, treating it as a kind of DIY social networking 
forum [12]. The examination of a random sample of 5,000 users 
found first that participation on the Scratch website focused on 
project-creation. To our surprise, creating and sharing projects 
was a baseline for all other kinds of online participation, 
demonstrating the centrality of programming and project creation 
on the Scratch website and providing a potentially new model for 
social networking sites. Further, there were almost no gender 
differences amongst participation profiles in terms of the different 
styles of participation engagement. In addition, we found that 
participation online shifted dramatically over the three-month 
time period. The majority of new users dropped their participation 
to lower levels, as did most users of intermediate levels of 
participation. Only the small group of highly involved users (high 
networkers, about 4% of the larger sample) had a strong 
likelihood of remaining in that most involved participation profile.  

A follow-up study on Scratch participation focused on an 
examination of the quantity and quality of comments left on 
projects on the site [15]. We found that comments focused on the 
actual projects as opposed to comments more with the purpose of 
socializing were both more extensive and more linguistically rich 
and affective. This again points to the importance of project 
creation on the Scratch site as a center of user participation and a 
site of rich commenting. 

In this study, we want to move beyond individual cases of success 
and even broad trends in online social participation to understand 
learners’ programming in a massive informal community. The 
research that comes closest to the type of examination of 
programming on a community-wide scale was a study of the 
archive of Scratch programs collected on a Computer Clubhouse 
server over an 18 month time period [28]. In examining the scripts 
of over 500 Scratch programs, we found that concepts such as 
looping and conditionals were prominent while others such as 
Booleans and variables were hardly present in programs, if at all. 
While the archive of programs was not comprehensive (only those 
that clubhouse members had saved were available for analysis) it 
indicated what broad concepts kids struggle with and that learning 
programming by choice does not guarantee introduction to the 
wider range. With these findings as a background, in this paper 
we tackle the important issue of quantity and content of 
programming by focusing on levels of sophistication, level of 
participation and how gender and community membership 
intersects with them. We address the broad patterns of the 
concepts kids use in their Scratch computer programs they share 
on the site, possible relationships between gender and 
membership and the quality of computer programs kids shared, 
and how participation relates to the quality of programs.  
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3. CONTEXT 
Scratch.mit.edu is a massive online community where 
participants, mostly youth ages 11-18 years share their computer 
programs [35]. Kids who share an interest in programming post 
animations, games, stories, science simulations, and interactive art 
they have made in the visual programming environment of 
Scratch (see Figure 1). Launched in May 2007 out of the MIT 
Media Lab, the Scratch site has grown to more than 2 million 
registered members with over 10,000 Scratch projects uploaded 
every day. We categorize the Scratch website as a do-it-yourself 
(DIY) social networking forum [16] a sub-genre of social 
networking site where activity centers around sharing user-created 
projects: projects dominate activity and social presence. User 
profiles are portfolio-based, showing individuals’ created projects, 
“favorite” projects, and links to user-created galleries (collections 
of projects) and recent “friends” on their home page (see Figure 
2). Traces of the social presence of users take the form of 
networking residues [16] left on projects and galleries, primarily 
including comments, love-its and favorites. Descriptive statistics 
listed under a project provide numerical values for these 
networking residues, listing the number of views, taggers, “love-
its,” favorites, remixes, downloads, and the user-curated galleries 
in which the project is located. 

 
Figure 1. Scratch 1.4 programming interface. 

 
Figure 2. Scratch.mit.edu profile page showing views, love-its, 
favorites, and downloads. 

4. METHODS 
4.1 Data 
Our analysis focused on a random sample of 5004 users drawn 
from amongst more than 20,000 users who logged into Scratch 
during the month of January 2012. This sample reflected the 
broader population on Scratch in regard to self-reported gender 
and age. Age on Scratch is only known through self-report (i.e., 
whatever birth year the user chooses). In our sample the mean age 
was 20 years old, the median 14, and the mode 12. However, there 
were a surprising number of individuals (more than 70) who were 
over 100 years old or under 4 years old (more than 50). Thus we 
view averages with great skepticism. (Similarly there are a 
surprising number of individuals reporting their home country as 
Antarctica or Aruba). 
We collected data on this sample of users for three months. 
During these three months, 1379 users created an original project 
in one of the three months (January – March 2012), 533 created a 
project in each of two months, and 313 created a project in all 
three months. Thus, 2225 users (67% boys and 33% girls, 
reflective of the broader Scratch population) who created at least 1 
project across a three-month period formed the new sample from 
which all further analyses reported in this paper are drawn. This 
sub-sample represents about 44.5% of the initial random sample 
of users and is the same sample used in our earlier analysis of 
participation profiles [12].  
The reason we focus on this sub-sample is that the remaining 
2779 users did no activities that we could access through the kinds 
of backend data available to us. In other words, though these users 
logged on to Scratch and likely browsed the site during the time of 
the study, we do not have information about what they did on 
Scratch. Most likely they viewed webpages without leaving any 
networking residues; they did not click “like” or favorite projects; 
they did not leave comments. Data about what users viewed was 
unavailable to us—it was not collected by the Scratch Team at 
MIT. We describe this more in our earlier analysis [12] and in 
section 5.4. This division of users who created and shared projects 
(and of those some who left comments or “love-its” or favorites) 
and those who did not create and share projects was a surprise to 
us. Based on our analyses, sharing a project on the Scratch site 
defines the baseline of all other active participation beyond 
viewing.  

4.1.1 Identifying Programming Concepts in Scratch 
Projects 
Of primary interest in this paper are the Scratch programs or 
projects users created and the kinds of programming scripts used 
in them. In our project data we have the number of each kind of 
programming block created in every new project by month. These 
data do not include any projects that were remixes of other 
projects on the Scratch site. Our logfiles contain records of the 
total number of forever loops, broadcast commands, and other 
scripts created by a user in a given month. Following the models 
used by Maloney and colleagues [28] and Fadjo [11] to analyze 
Scratch projects, we first created groupings of Scratch commands 
(or scripts) that fit together conceptually, including Loops, 
Conditionals, Broadcasts, Operators, Booleans, Sensing, and 
Variables (capitalized for ease of identifying these categories 
throughout the text). For instance, in Loops we included all non-
conditional loops in Scratch, namely the “forever” and the 
“repeat [ ] times” loops (the only non-conditional loops in 
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Scratch). In Operators we included all operators that had 
mathematical functions1, such as the “[ ] + [ ]”, “[ ] – [ ]”, and 
“[ ] < [ ]”. After initial analyses we determined that five 
categories of Scratch programming concepts helped to 
differentiate profile patterns amongst users: Loops, Booleans, 
Operators, Broadcasts, and Variables. Each of these is illustrative 
of the use of a particular programming concept (see also, [6]): 
Loops are repeating functions; Booleans involve logic statements 
such as and, not, and or; Operators are mathematical functions 
and are used only in conditional statements so they are also a 
stand-in for the presence of conditionals; Broadcasts are a form of 
synchronization and event-driven programming in Scratch; and 
Variables include scripts related to abstract user-created variables.  

For further analysis, we divided each programming category 
roughly equally into four quartiles. We did this in order to see 
whether there were differences between creators who used larger 
or smaller numbers of blocks in a particular category. For 
instance, did it matter whether a creator used one or two loops in 
her programs for a month or whether she used eight or nine? Did 
that help to differentiate any of the users in terms of their 
programming? Quartile 0 (Q0) means that the user did not use any 
scripts involving that particular concept (i.e., a “0” in Loops 
means that no loops were used in that users’ project within a given 
month). The only exception for this is Broadcast which requires at 
least two scripts to work (broadcast [message] and when I receive 
[message]) so the value for Q0 is 0-1 for that concept. We divided 
all other values into three parts, as equivalent as possible keeping 
whole numbers. These are labeled 1, 2, and 3, and are shown in 
Table 1.  

Table 1. Quartile values for programming concepts 
 Loop Boolean Operator Broadcast Variable 

Q0 0 0 0 0-1 0 
Q1 1-3 1-2 1-6 2-4 1-7 
Q2 4-11 3-10 7-22 5-11 8-27 
Q3 12+ 11+ 23+ 12+ 28+ 

4.2 Methods 

4.2.1 Programming profiles: latent class analysis of 
programming concepts 
To identify communities of similar Scratch users based their 
programing preferences, we used a series of latent class analyses 
(LCAs) across each of three months (for more details, see [33]). 
The process of LCA identifies the maximum number of latent 
classes (groups of similar individuals) based a set of observable 
variables and model fit indices [18; 32]. For example, given a set 
of observable programming concepts (e.g., loops, booleans) and 
the extent they are used, LCA identifies and groups individuals 
with similar programming profiles into latent classes.  

There are two main advantages of using LCA over other methods 
(e.g., mean split, cluster analyses). First, it relies on model fitting 
statistics and substantive interpretation to identify the optimal 
number of latent classes [18; 32]. LCA is an iterative process that 

                                                                 
1 Initially we separated mathematical operators like addition and 
subtraction from comparative operators such as “less than” and “equal to.” 
However there was no difference in the users who used these commands, 
so we created a single category of operators. 
 

compares models with a particular number of latent classes with a 
model with one less class. For example, LCA would first examine 
whether a model with two latent classes (e.g., novice vs. advanced 
users) would be provide a better fit than a one-class model (e.g., 
novice users). If so, LCA continues to test models with additional 
latent classes until model fit indices and substantive interpretation 
are satisfactory. Given the potential ambiguity in model fit 
indices, the substantive aspect of LCA allows the researcher 
flexibility in identifying the optimal number of latent classes to 
balance statistical and theoretical interpretation of each class. This 
avoids the potential of identifying classes with only a few users or 
a class that is generally similar to another except for minor 
statistical differences in specific observed activity. The second 
advantage of LCA is its ability to create latent classes with unique 
profiles of activities. That is, each latent class contains a profile of 
estimated means and corresponding probability of being classified 
into that class. For example, novice Scratch users may have a 
profile that shows an exclusive use loops at a high level, while 
advanced users may use loops as well as Booleans and operators 
at high levels. Each participant is then given probabilities of being 
classified into each class, and generally users have a highest-class 
probability (i.e., the most likely membership class). 

4.2.2 Participant profiles: Membership and gender  
To test whether membership or gender were proportionately 
represented in each of the latent classes, multiple chi-square tests 
for independence analyses were performed for each of the three 
months. These analyses were conducted based on participants’ 
highest class assignment, self-reported gender, and membership 
(the total lifetime of the user’s account as of January 2012). 
Membership was distributed across four categories of members: 
users with brand new accounts created in January 2012 (newbies), 
users with accounts up to three months old (young), accounts up 
to 12 months old (one-year), and accounts over one-year old 
(oldies). A significant chi-square test would show that there was a 
relationship between gender (or membership) and programming 
profiles. Follow-up standardize residual scores would test whether 
the actual count of individuals in a given cell is greater than (z > 
|2| or |3|) or less than expected (z < |2 or 3|) at p = .05 or p = .01. 
For example, a significant standardized residual would indicate 
that the number of females in a given membership class is 
significant greater (z > 2) or less (z < 2) than expected. See Table 
2 for details on the distribution of membership. 

Table 2. Distribution of Scratch membership 

Scratch Membership Frequency Percent of 
Sample 

Newbie (new account) 1436 28.7 
Young (0-3 months) 1364 27.3 

One-year (4-12 months) 973 19.4 
Oldie (12+ months) 1165 23.3 

4.2.3 Comparing relationships between programming 
profiles to participation profiles.  
Building on our prior study of participation patterns in 
Scratch.mit.edu [12], we compared participation profiles with 
programming profiles. Our earlier study used LCA to identify the 
number of latent classes based on general practices of online 
participation. Table 3 illustrates and provides definitions for the 
participation profiles we identified. The study used six common 
participation, collaboration, and communicating practices on 
Scratch.mit.edu (i.e., remixing, downloading, commenting, 
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favorites, love-its, and friend requests) to identify the number of 
latent classes amongst project creators. To examine whether these 
participation profiles were distributed equally, or rather 
proportionately, across the programming profiles, we conducted a 
chi-square test for independence analysis.  

 

Table 3. Latent classes of Scratch users who created and 
shared projects in January – March 2012 (n=2225) 

Name Description 

Low Network 
 

Creates & shares projects but 
does nothing else visible on 
the site. 

Downloaders All of the above + downloads 
projects 

Commenters All of the above + comments 
on projects 

Networkers 
All of the above + some 
likelihood of “love-its” or 
“favorites” and some 
friending 

Pr
oj

ec
t C

re
at

or
s 

High Network  
All of the above + usage of 
both “love-its,” “favorites,” 
and friending, as well as a 
higher likelihood of remixing 

5. FINDINGS 
The results from our analyses of youth programmers in the wild 
fall into two broad categories: expected and unexpected findings 
of computational participation. On the expected side of findings, 
we were able to identify stable programming profiles with one 
class containing the most sophisticated programmers. We also 
found that two groups, girls and newcomers to the community, 
were relatively absent in that class with the most sophisticated 
programmers. On the unexpected side of findings, we observed an 
overall lack of relationship between programming profiles and 
participation profiles, those latter being profiles that indicate 
overall activity on the site as captured in the logfiles [12]. In the 
following sections, we explain these findings in more detail.  

5.1 Programming Profiles 
Our analysis identified four latent classes, or unique groups, of 
Scratch youth programmers, hereafter called “programming 
profiles” (see Appendix for more details in determining these 
classes). Model indices and posterior probabilities revealed very 
similar classes across the three months (see Figure 3). These 
findings indicate qualitative differences among the four groups of 
users who differ in their levels of programming knowledge and 
use; however, these classes of users are consistent across time and 
situations, regardless of the number of users who created projects 
in a given month (in January, 1770 users created projects; in 
February 921 users; and in March, 693 users). In describing these 
four unique groups, the profiles suggest different usage levels of 
programming concepts and thus our descriptors range from 
beginners to experienced (see Table 4). 
 

 

Table 4. Description and percentage of user classified in each programming profiles by month (N = 1719). 
Programming Profile Description January February March 

Class 1: Beginners 

Smaller, simpler projects: Used 
a relatively low percentage 

(quartile 1) of loops and almost 
no other advanced concepts.  

58.4% 58.1% 51.7% 

Class 2: Intermediate 
Middle-sized, more complex 

projects: Used all programming 
concepts except for Booleans 

18.8% 16.2% 17.3% 

Class 3: Advanced Middle-sized projects including 
Booleans.  19.0% 16.2% 18.0% 

Class 4: Experienced Largest projects including 
Booleans 8.0% 11.2% 13.0% 

 
 

Figure 3. Latent class analyses for January, February, and March 2012, respectively 
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The largest class of project creators (Class 1, Beginners) uses a 
minimal amount of loops (quartile 1, 1-3 loops) and almost no 
other programming concepts we studied. These users seem to 
create relatively small and simple projects with few if any 
advanced kinds of commands. There is a relatively small 
likelihood that these users introduce operators, broadcasts, or 
variables. The second class of project creators (Class 2, 
Intermediate) introduces operators (i.e., conditionals) and 
variables into their Scratch programming projects and also utilizes 
more loops (quartile 2, 4-11 loops). The third and fourth classes 
both use Booleans. The main difference between the two is the 
number of Booleans and other advanced concepts they use. Class 
3 (Advanced) uses roughly the same number of operators and 
variables as Class 2. Class 4 (Experienced) uses more of 
everything, suggesting to us that these projects are larger and 
more complex or possibly that these users simply create a larger 
number of projects with more (or more repetitious) advanced 
commands in a given month. 

Our naming of these groups as Beginner, Intermediate, Advanced, 
and Experienced may not be reflective of the actual sophistication 
of these users’ programs. For instance, smaller projects with 
advanced commands (Class 3) might actually imply greater 
sophistication. However, given the trends we relate later in this 
paper, particularly who is in the Class 4 (Experienced) group, this 
class appears to be more elite and more invested overall on the 
site. 

5.2 Length of Membership Differences in 
Programming Profiles 
Further analysis of the Scratch users’ programming profiles 
revealed that membership, as indicated by account lifetime, 
matters somewhat (see Table 5). Not unexpectedly, our class of 
Experienced Programmers (Class 4) are less likely to be newbies 
(z = –2.0) and more likely to be oldtimers (z = 2.1). Confirming 
this trend, Intermediate Programmers (Class 2) who utilized both 
basic and intermediate programming are less likely to be one-year 
users (z = –2.7). Because these were the only observed significant 
differences in distributions, we conclude that length of 
membership does not play a large a role in terms of the content of 
programming. For example, within classes of Beginners and 
Advanced Programmers, there are (proportionally) equal number 
individuals across the four account lifetimes, and even within 
Beginners (Class 1) and Experienced (Class 4) Programmers, 
there are Scratch members with a year or less of being registered 
on the site.  

Table 5. Programming profiles (class) by membership count. 

 Account Lifetime 

Class Newbies Young One-
year Oldbies 

1 384 283 179 138 

2 117 111 34~ 51 

3 92 66 44 42 

4 37~ 39 29 31+ 

Chi-square (9) = 24.799, p = .003  

+ standardized residuals (z) is greater than 2.0; this indicates a greater 
proportion of individuals than expected for the cell. 

~ standardized residuals (z) is less than -2.0; this indicates a smaller 
proportion of individuals than expected for the cell. 

5.3 Gender Differences in Programming 
Profiles 
In addition to length of membership in Scratch community, 
gender had a significant impact in which class Scratch 
programmers ended up. We know that girls only represent one-
third of all registered members on the Scratch site (as measured 
by self-reported gender). The distribution in our overall sample 
reflected this distribution of self-reported gender on the Scratch 
site: 33% female and 67% male. We tested whether gender was 
proportionately represented in each of the latent programming 
classes (see Table 6). We found significant differences in regard 
to gender within three programming profiles, chi-square (3) = 
61.359, p < .001. Specifically, there were more girls than expected 
in the Beginner Class (z = 3.7) and fewer girls than expected in 
the Advanced Class (z= –2.9) and in the Experienced Class (z= –
4.1). Similarly there were fewer boys than expected in the 
Beginner Class  (z = –2.7), and more boys than expected in the 
Advanced Class (z = 2.1) and especially the Experienced Class (z 
= 3.0).  

Table 6. Programming profiles (class) by Gender count. 

Class Boy Girls 

1 575~ 409++ 

2 217 96 

3 186+ 58~~ 
4 117++ 19~~ 

Chi-square (3) = 61.59, p < .001 

+ standardized residuals (z) is greater than 2.0; ++ z is greater than 3.3; 
these indicate a greater proportion of individuals than expected for the 
cell. 

~z is less than -2.0; ~~ z is less than -3.3; these indicate a smaller 
proportion of individuals than expected for the cell. 

5.4 Relationship between Programming 
Profiles and Participation Profiles 
In a final step, we examined the relationship between 
programming profiles and participation profiles, connecting our 
study of programming concepts with earlier work [12] on levels of 
participation such as downloading, commenting, remixing, 
“loving,” or friending in the online Scratch community. To our 
surprise, the analysis did not reveal a significant link, chi-square 
(12) = 20.791, p = .054. In general, the four classes of 
programmers, from beginners to experienced, existed equally 
across the five general participation classes and vice versa (see 
Table 7). Regardless of how involved users were on the Scratch 
site in regard to either downloading, commenting, remixing, 
“loving,” or friending, there was no relationship to the types of 
programming concepts they used in their projects or how 
“advanced” their programming was. In other words, Scratch 
learners could be low networkers with intermediate or small 
Boolean programming profiles or commenters only programming 
with the simpler loops. There was, however, one exception to this 
trend: high networkers on the Scratch site were strongly likely to 
be in the Experienced Class 4 of programmers (z = 3.0). This was 
the only link between programming and participation, and again it 
occurred in the high pole of both programming and participation. 
So the most experienced Scratch users online are also the most 
likely to create the most advanced projects. 
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Table 7. Programming profiles by participation profile count. 

 
 

Programming Profiles 

Participation 
Profiles 1 3 2 4 

Low Networker 331 68 89 33 
Downloaders 223 68 85 33 
Commenters 137 31 43 18 
Networkers 196 46 63 25 

High Networker 97 31 33 27+ 
Chi-square (12) = 20.791, p = .054   

+ standardized residuals (z) is greater than 2.0; this indicates a 
greater proportion of individuals than expected for the cell 

6. DISCUSSION  
In this paper, we examined computational participation in the 
wild, the type of self-organized and self-directed activities that 
have opened alternative paths for youth to become engaged in 
programming. What did we learn about informal programmers? 
We learned that there are stable and cohesive classes of 
programmers in the Scratch community that reflect a range of 
experience based on their use of programming concepts. This 
work builds and expands on an earlier study of an informal 
programming community [28]. In the absence of other studies that 
have examined youth programming in informal learning 
communities, these findings present a first portrait of how learners 
in such communities are distributed. In the following sections, we 
discuss the nature and equity of computational participation in 
informal programming communities, address limitations of our 
analytical approach, and outline directions for future research. 

6.1 Nature and Equity of Computational 
Participation 
Our findings indicate that there is a highly experienced group of 
participants who are the most involved and the most advanced 
programmers on the Scratch site—not a surprising result given 
what we know from prior research in another massive online 
informal youth community, albeit not focused on programming 
[23]. While large number of participants in sites with millions of 
registered users result in overall high activity, it is in fact often the 
smallest group of users that drives the most activities. Just like in 
many classrooms, we have a few students who are actively 
participating in class activities most of the time while others are 
occasionally engaged and a large group of students remains at the 
periphery. In other words, while everyone has access to the site, 
not everyone is as highly engaged and contributes in the same 
manner in informal learning communities. It is also here where we 
found the most significant differences in regard to gender and 
membership.  

We found significant differences in length of Scratch 
membership, or account lifetimes, as well as high networkers in 
regard to Experienced programming profiles. The most senior 
Scratch users, those who have spent the longest time on Scratch 
and still frequent the site, are the most likely to program with 
advanced programming concepts with the greatest frequency of 
use. On the other end of the pole, those who have created new 
accounts are less likely to have this programming profile. It makes 
some sense that those who have frequented Scratch the longest are 

more likely to build more complex, larger programs. Yet 
interestingly there are few differences between programming and 
participation outside of this high pole. Why might this be? One 
explanation is that users may join the Scratch community with 
diverse prior expertise in programming. Our own studies of after-
school clubs have shown that some youth are reluctant to post a 
project to the Scratch community until they feel they have enough 
expertise and their projects are good enough to be comparable to 
others’ projects [25]. Thus new users may already come with 
significant prior expertise in programming in Scratch. On the 
other hand, many classrooms and workshops have youth post 
projects online frequently at the end of a class for the purpose of 
data storage or to get feedback from others online, even if (or 
because) projects are incomplete and in-progress [14; 22]. This 
may account for a few reasons why there is such diversity of 
programming profile independent of participation and 
membership except at the highest poles of Scratch programming. 

We also found significant gender differences in Beginners and 
Experienced classes. However, there were no significant gender 
differences in Intermediate Class, the group that utilized operators 
and variables. Proponents of broadening participation in 
computing may take some encouragement from this, as it suggests 
that at an intermediate level of novice programming in Scratch 
online, girls are just as well represented as boys. Further in the 
Advanced Class, which did use Booleans, the gender differences 
were much smaller than in Beginner and Experienced Classes. 
Our analyses indicate that the greatest differences in gender are at 
the extreme poles of the programming profiles.  

Putting this into broader context, in our analysis of participation 
patterns on the Scratch website, we found almost no differences in 
regard to gender and participation; each profile of Scratch 
participation was proportionately balanced in regard to gender 
distribution [12]. This puts the differences in gender at the high 
pole of programming (Experienced) in an interesting light, 
especially since that class of programming showed the only 
significant link to a particular participation profile (the high 
networkers) in which there were no gender differences over time. 
Why is there a gender difference in programming at this high 
programming profile when there is no difference in gender with 
the linked participation profile? In the tech community, there has 
been a strong push to involve women in the socialization of 
computer science, assuming that such socialization will result in 
more involved and higher levels of coding. Yet these results 
suggest we need better understanding of how social engagement 
might relate to programming engagement. As Ito et al [20] might 
put it, hanging out and messing around, even at high levels, may 
not directly result in “geeking out.”  

Given the marked conversation on the need to broaden 
participation in computing [29; 30], these gender differences 
suggest the need not just to broaden participation in computing 
but also to deepen participation in computing, especially at the 
higher levels that may introduce more complex programming 
concepts. In other words, computational participation is not just a 
matter of quantity but also one of quality of engagement. 

6.2 Limitations of Data and Analysis 
While these findings provide us with broad trends of youth 
computational participation in an informal online community, 
they also come with certain limitations. Notably, in this dataset we 
cannot say how effectively scripts were used in Scratch projects. 
We can only describe how many of them there are in the sum total 
of projects uploaded by each user in a given month. Related we 
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cannot say exactly how large the projects are in terms of the 
number of programming commands. Our approximations of size 
in this study are solely related to the number of certain kinds of 
concepts used in the projects in a given month. This is admittedly 
a limitation in attempting to describe the sophistication and 
complexity of projects, however this approach was adequate given 
our goal of understanding of broad trends of programming in 
Scratch projects uploaded on a massive social networking forum. 

6.3  Directions for Future Research 
It is clear that we are just at the initial phase of mapping out what 
we know about learners in informal programming communities. 
Further steps should include developing better approaches to 
analyze programming, examining trajectories of computational 
participation, and broadening access to deeper computational 
participation. To begin with, we need address the challenges of 
analyzing not just the quantity but also the quality of beginners’ 
programming. We already noted limitations in our logfile data set 
and how programming concepts captured different levels of 
engagement with Scratch. At first cut, counting the number of 
programming concepts in a Scratch project is a reasonable 
approach in capturing some level of difficulty, especially since we 
know from prior research that not all programming concepts are 
used equally in informal programming communities. We need to 
develop more nuanced descriptions of programming that go 
beyond pure project or block counts. While these first measures 
have been useful on a massive scale, they only reveal profiles on a 
surface level. Developing ways to capture context or sets of 
scripts on a massive scale would provide more nuanced ways to 
understand youth programming [13].  

Furthermore, we need to situate findings from patterns in massive 
participation in relation to trajectories of individual learners, for 
bringing in individual case studies and ethnographic work on 
specific groups of users. We know from previous research that 
participants even within a class or cluster can look very different 
[23]. In fact we would expect quite a lot of diversity if we started 
looking at individuals and their trajectories of participation on the 
site even within a particular programming class. Examining 
different programming profiles, we know that programming might 
be easier in the beginning and then get exponentially more 
difficult. Moving from the Beginners to Advanced class appears 
to be more than just a step, it’s an exponential jump. In this 
context, it might also be important to conduct transition analyses 
of kids’ programming profiles over many months and possibly 
years. Tracing different pathways of users on the road to 
Advanced or Experienced programmers might provide 
illumination as to supports and interventions that help them reach 
that status. Lastly, our findings refer to an older version of the 
Scratch community, prior to the release of Scratch 2.0 in May 
2013. The release of Scratch 2.0 could change programming 
profiles significantly; participation has quadrupled, users can now 
program directly on the site, new scripts (including functions) 
have been added, and many other new features incorporated such 
as greater ease of grabbing programming scripts from others’ 
projects. New research is needed to see whether and how these 
features have facilitated different aspects of computational 
participation.  

Another central goal of understanding learners in informal 
programming communities is to broaden access and deepen 
computational participation at large. We noted in our analysis a 
few significant differences in gender and membership 
participation that seem to replicate longstanding differences in 
computing communities [30]. Given the renewed interest in 

programming, we need to think about pathways of getting people 
not just into the introductory levels of programming but also into 
deeper, more sophisticated levels. It is a qualitative shift from 
broadening access to deepening participation that is not just about 
time spent in an activity or community but also about the kind of 
programming activities beginners become involved in. From some 
preliminary analysis on the Scratch community we know that girls 
become heavily involved in live role-playing games, often making 
thousands of comments but engaging in little programming [37]. 
Such projects indicate potential gateway activities into 
programming, but they also indicate a need for new instructional 
designs that foster qualitatively more complex types of 
programming. In this way our learning about programming in the 
wild can inform programming by design for broadening and 
deepening computational participation for all. 

Finally, we need to develop better ways to connect what we know 
about learners and computational participation by choice—in the 
wild—with computational participation by design, the 
instructional efforts in schools. Over the last two decades, much 
research in K-12 education has shown the significant relationship 
between informal and formal learning opportunities for 
developing and maintaining interest as well as practicing and 
deepening understanding in subject matter and skills. Rather than 
seeing them as isolated contexts, they can be harnessed for 
improved outreach and for better learning in mutually beneficial 
ways.     
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9. APPENDIX 
Based on model indices (see Tables 8a-c below), LCA results 
identify four classes of programming users. That is, large 
decreases prior to and leveling off of model indices values (aBIC, 
BIC, AIC) after the four-class model indicate more complex 
models add little additional statistical depth. In addition, although 
LMR p-values and entropy values suggest a fifth class or higher 
may provide a better fit, substantive examinations of these larger 
classes revealed redundant classes (with marginal differences in 
programming use) along with small class sizes consisting of less 
than 1.7% of users (12-28 users among the 1719). For each 
participant, LCA generates probabilities for membership into each 
class, and generally one class has the highest probability of 
members. For instance, results show the January users classified 
into their highest probability latent class had a 95-100% 
probability of being in that class, and a 0-5% of being in the other 
classes (see Table 9a); these numbers were similar for February 
(96-100%; 0-4%) (Table 9b) and March (95-100%; 0-5%) (Table 
9c). Taken together, the interpretation of the four-class model 
provided a better, more parsimonious and substantive 
interpretation of the data. Table 8a to 1c displays the fit indices 
for January, February, and March.  

Table 8. Model fit indices for January to March. 

Table 8a. Model fit indices for January 

 January: N = 1719 
# of 

classes likelihood 
free 
par BIC aBIC 

LMR  
p-value Entropy AIC 

1 -13021.72 10 26117.927 26086.158 N/A N/A 26063.432 
2 -11093.31 16 22305.81 22254.979 0.0000 0.948 22218.618 

3 -10152.07 22 20468.028 20398.137 0.0000 0.95 20348.14 

4 -9699.059 28 19606.705 19517.752 0.0000 0.963 19454.119 
5 -9494.66 34 19242.602 19134.588 0.0109 0.973 19057.319 

6 -8994.426 40 18286.832 18159.757 0.0112 0.999 18068.853 
7 -8935.328 46 18213.332 18067.196 0.0000 0.999 17962.656 

 

Table 8b. Model fit indices for February 

 February N = 1719 
# of 

classes likelihood 
free 
par BIC aBIC 

LMR  
p-value Entropy AIC 

1 -7057.718 10 14183.482 14151.724 NA NA 14135.436 
2 -5804.549 16 11717.971 11667.157 0.0000 0.967 11641.097 

3 -5244.767 22 10639.236 10569.368 0.0001 0.974 10533.535 

4 -5032.713 28 10255.955 10167.032 0.0034 0.976 10121.426 
5 -4885.536 34 10002.428 9894.449 0.0002 0.983 9839.071 

6 -4707.744 40 9687.673 9560.64 0.4797 0.952 9495.489 

7 -4485.267 46 9283.546 9137.457 0.0072 0.999 9062.533 
 

Table 8c. Model fit indices for March 

 March N = 1719 
# of 

classes likelihood 
free 
par BIC aBIC 

LMR  
p-value Entropy AIC 

1 -5355.246 10 10775.697 10743.946 NA NA 10730.491 

2 -4375.486 16 8855.302 8804.5 0.0000 0.974 8782.972 
3 -4033.562 22 8210.577 8140.724 0.0011 0.966 8111.123 

4 -3902.107 28 7986.791 7897.888 0.0028 0.970 7860.214 
5 -3789.717 34 7801.134 7693.181 0.0001 0.979 7647.433 

6 -3674.031 40 7608.886 7481.882 0.0080 0.997 7428.061 

7 -3554.136 46 7408.221 7262.166 0.0759 0.997 7200.272 
 

Table 9. Average Latent Class Probabilities from January to 
March. 

Most Likely Latent Class Membership (Row) by Latent Class 
(Column) 

Table 9a. January: Average Latent Class Probabilities  
 1 2 3 4 

1 0.979 0.019 0.002 0.000 

2 0.001 0.950 0.000 0.000 

3 0.050 0.000 0.999 0.000 

4 0.000 0.000 0.000 1.000 

Table 9b. February: Average Latent Class Probabilities 
 1 2 3 4 

1 0.990 0.008 0.002 0.000 

2 0.005 0.960 0.000 0.000 

3 0.040 0.002 0.993 0.000 

4 0.000 0.000 0.000 1.000 

Table 9c. March: Average Latent Class Probabilities 
 1 2 3 4 

1 0.988 0.002 0.008 0.002 

2 0.003 0.952 0.048 0.000 

3 0.000 0.011 0.987 0.000 

4 0.000 0.000 0.000 1.000 
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