
Programming in the Wild: Trends in Youth Computational
Participation in the Online Scratch Community

Deborah A. Fields
Utah State University

2830 Old Main Hill
Logan, UT 84321

+1 (435) 797-0571
deborah.fields@usu.edu

Michael Giang
Mount St. Mary’s College

12001 Chalod Rd.
Los Angeles, CA 90049

+1 (310) 954-4157
mgiang@msmc.la.edu

Yasmin Kafai
University of Pennsylvania

3700 Walnut Street
Philadelphia, PA 19104

+1 (215) 746-3468
kafai@upenn.edu

ABSTRACT
Most research in primary and secondary computing education has
focused on understanding learners within formal classroom
communities, leaving aside the growing number of promising
informal online programming communities where young learners
contribute, comment, and collaborate on programs. In this paper,
we examined trends in computational participation in Scratch, an
online community with over 1 million registered youth designers
primarily 11-18 years of age. Drawing on a random sample of
5,000 youth programmers and their activities over three months in
early 2012, we examined the quantity of programming concepts
used in projects in relation to level of participation, gender, and
account age of Scratch programmers. Latent class analyses
revealed four unique groups of programmers. While there was no
significant link between level of online participation, ranging
from low to high, and level of programming sophistication, the
exception was a small group of highly engaged users who were
most likely to use more complex programming concepts. Groups
who only used few of the more sophisticated programming
concepts, such as Booleans, variables and operators, were
identified as Scratch users new to the site and girls. In the
discussion we address the challenges of analyzing young learners’
programming in informal online communities and opportunities
for designing more equitable computational participation.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education

Keywords
Computer science education, collaborative learning, social
networking sites

1. INTRODUCTION
Most efforts in primary and secondary computing education have
focused on understanding learners within formal learning
communities of school classrooms. Some research has examined

learners’ conceptions of programming—or the lack thereof [40].
Other efforts have focused on understanding novices’ challenges
with particular programming concepts, such as loops,
conditionals, and data structures [36; 38] and focused on
designing programming environments and tools that facilitate the
mechanics of programming [27]. Instructional efforts have also
focused on the design of programming tasks and developed
approaches around more authentic and situated approaches, such
as game design [21] and media-based computing [34]. Likewise
social arrangements in classrooms such as pair programming [10],
peer pedagogy [9] and even collaborative board games [2] have
been found successful for beginning learners.

However, there is a growing interest in understanding learners in
informal online communities where programming is a choice and
participants contribute, comment, and collaborate on programs
inspired by open source efforts [1; 19]. Unlike formal classroom
communities, here participants often learn programming on their
own; they program when they want, what they want, and with
whom they want, with the potential to learn from and with others
without the explicit guidance and support of a teacher. An early
example of this type of community included MOOSE Crossing
[7] while more recent examples include Kodu and Scratch. Most
of the work to date has focused on Scratch (Resnick et al., 2009),
by far the largest online programming community focused on
youth, where young programmers post Scratch programs that they
create, leave comments on each others’ work, seek and provide
help on forums, view, and download others’ programs. To
highlight the social dynamics of learning programming in these
youth amateur communities, we have chosen to frame them as
“computational participation” [22].

In framing interactions and contributions as computational
participation, we move away from a predominantly individualistic
view of computing to one that includes a greater focus on the
underlying sociological and cultural dimensions in learning to
code, expanding computational thinking to include social
participation and personal expression. Most of the work in this
area regarding youth has been primarily ethnographic in nature
focusing on case studies of young designers within a large online
community of programmers [3; 8]. With the recent comeback of
coding and interest in promoting programming as a new literacy
[22], these informal learning communities are growing in
popularity (e.g., Scratch has 90,000 active monthly users as of
July 2014 up from 20,000 two years ago), little is known about
these learners. Our own initial efforts in studying these
environments have examined levels of participation [12] and
commenting [15], but nothing so far has focused on identifying

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Request permissions from Permissions@acm.org
WiPSCE, November 05 - 07 2014, Berlin, Germany.
Copyright 2014 ACM 978-1-4503-3250- 7/14/11…$15.00
http://dx.doi.org/10.1145/2670757.2670768

WiPSCE 2014 Research Papers

2

the quantity and quality of programming that we can observe on
such a massive scale.

In this paper, we examine youths’ computational participation by
choice—‘in the wild’—and the type of self-organized activities
that emerged with the recent arrival of online networking
communities which have opened alternative paths for youth to
become engaged in programming. With over seven million
projects shared since its public launch in 2007, the Scratch
website is a vibrant online community with 8,000-10,000 new
projects being uploaded every day. Scratch is also a media-rich
programming language that allows youth to design, share, and
remix software programs in the form of games, stories, and
animations [35]. For the purpose of our study, we drew on a
random sample of 5,000 youth programmers and their activities
over three months in early 2012, examining the quantity of
programming concepts used in projects in relation to the level of
participation, gender, and length of membership of Scratch
programmers. We address the following three research questions:
(1) What broad patterns exist in terms of the programming
concepts kids use in the computer programs they share on the
Scratch.mit.edu website? What kinds of commands do kids use in
the programs they share ‘in the wild’? (2) Are there any
relationships between the quality of computer programs kids share
and their gender or their length of membership (account lifetime)
on the Scratch website? Finally, (3) Does the way someone
participates in the Scratch website relate in any way to the
programming content of their programs? In other words, are there
any relationships between the users’ programming profiles and
their participation profiles? In the discussion we address the
challenges of analyzing young learners’ programming by choice
and opportunities for designing more equitable computational
participation in formal and informal online communities.

2. BACKGROUND
Our research to understand ‘computational participation’ of youth
programming in informal communities is framed by a perspective
of computing that moves away from a predominantly
individualistic view of computing to one that includes a greater
focus on the underlying sociological and cultural dimensions in
learning to code, expanding computational thinking to include
social participation and personal expression. “Computational
participation… is the ability to solve problems with others, design
systems for and with others, and understand the cultural and social
nature of human behavior by drawing on concepts, practices, and
perspectives fundamental to computer science” (p. 6, [22]). With
“computational participation” we connect to recent efforts [17] to
promote computational thinking that have been defined as all
“aspects of designing systems, solving problems, and
understanding human behaviors” that highlight the contributions
of computer science (p. 6, [39]). By including this social
dimension of computing, we leverage connectivity inherent in the
digital world of the 21st century that becomes particularly
manifest in the massive online social networking forums [16]
where users post programs that they have made. In these interest-
driven communities youth come together not only to hang out and
mess around [2] but also to create, remix, and share their code.

Yet only a few studies have examined computational participation
in these interest-driven communities, offline or online. One prime
area to study computational participation at a massive level is on
the Scratch website itself, as the most prominent and well-
populated website where novice programmers and kids can share,
comment on, and socialize around programmed Scratch projects
[35]. So far, the research on computational participation in

Scratch [22] has examined subsets of smaller, interest-driven
communities, collabs, and individuals, in particular the prominent
practice of remixing (editing and re-sharing others’ projects) on
the site, and also engaged in studies of interventions intended to
support time-limited small-group collaboration. Most of this
research has either been more observational and used case studies
[5], though some studies have been more experimental in nature
and have taken place within the larger online Scratch community,
such as Monroy-Hernandez’s broad study of remixing [31].

Our own first step in understanding broad trends of programming
and participation on the Scratch website focused on participation
profiles, identifying how users engaged in downloading,
commenting, remixing, “loving,” or friending in the online
Scratch community, treating it as a kind of DIY social networking
forum [12]. The examination of a random sample of 5,000 users
found first that participation on the Scratch website focused on
project-creation. To our surprise, creating and sharing projects
was a baseline for all other kinds of online participation,
demonstrating the centrality of programming and project creation
on the Scratch website and providing a potentially new model for
social networking sites. Further, there were almost no gender
differences amongst participation profiles in terms of the different
styles of participation engagement. In addition, we found that
participation online shifted dramatically over the three-month
time period. The majority of new users dropped their participation
to lower levels, as did most users of intermediate levels of
participation. Only the small group of highly involved users (high
networkers, about 4% of the larger sample) had a strong
likelihood of remaining in that most involved participation profile.

A follow-up study on Scratch participation focused on an
examination of the quantity and quality of comments left on
projects on the site [15]. We found that comments focused on the
actual projects as opposed to comments more with the purpose of
socializing were both more extensive and more linguistically rich
and affective. This again points to the importance of project
creation on the Scratch site as a center of user participation and a
site of rich commenting.

In this study, we want to move beyond individual cases of success
and even broad trends in online social participation to understand
learners’ programming in a massive informal community. The
research that comes closest to the type of examination of
programming on a community-wide scale was a study of the
archive of Scratch programs collected on a Computer Clubhouse
server over an 18 month time period [28]. In examining the scripts
of over 500 Scratch programs, we found that concepts such as
looping and conditionals were prominent while others such as
Booleans and variables were hardly present in programs, if at all.
While the archive of programs was not comprehensive (only those
that clubhouse members had saved were available for analysis) it
indicated what broad concepts kids struggle with and that learning
programming by choice does not guarantee introduction to the
wider range. With these findings as a background, in this paper
we tackle the important issue of quantity and content of
programming by focusing on levels of sophistication, level of
participation and how gender and community membership
intersects with them. We address the broad patterns of the
concepts kids use in their Scratch computer programs they share
on the site, possible relationships between gender and
membership and the quality of computer programs kids shared,
and how participation relates to the quality of programs.

WiPSCE 2014 Research Papers

3

3. CONTEXT
Scratch.mit.edu is a massive online community where
participants, mostly youth ages 11-18 years share their computer
programs [35]. Kids who share an interest in programming post
animations, games, stories, science simulations, and interactive art
they have made in the visual programming environment of
Scratch (see Figure 1). Launched in May 2007 out of the MIT
Media Lab, the Scratch site has grown to more than 2 million
registered members with over 10,000 Scratch projects uploaded
every day. We categorize the Scratch website as a do-it-yourself
(DIY) social networking forum [16] a sub-genre of social
networking site where activity centers around sharing user-created
projects: projects dominate activity and social presence. User
profiles are portfolio-based, showing individuals’ created projects,
“favorite” projects, and links to user-created galleries (collections
of projects) and recent “friends” on their home page (see Figure
2). Traces of the social presence of users take the form of
networking residues [16] left on projects and galleries, primarily
including comments, love-its and favorites. Descriptive statistics
listed under a project provide numerical values for these
networking residues, listing the number of views, taggers, “love-
its,” favorites, remixes, downloads, and the user-curated galleries
in which the project is located.

Figure 1. Scratch 1.4 programming interface.

Figure 2. Scratch.mit.edu profile page showing views, love-its,
favorites, and downloads.

4. METHODS
4.1 Data
Our analysis focused on a random sample of 5004 users drawn
from amongst more than 20,000 users who logged into Scratch
during the month of January 2012. This sample reflected the
broader population on Scratch in regard to self-reported gender
and age. Age on Scratch is only known through self-report (i.e.,
whatever birth year the user chooses). In our sample the mean age
was 20 years old, the median 14, and the mode 12. However, there
were a surprising number of individuals (more than 70) who were
over 100 years old or under 4 years old (more than 50). Thus we
view averages with great skepticism. (Similarly there are a
surprising number of individuals reporting their home country as
Antarctica or Aruba).
We collected data on this sample of users for three months.
During these three months, 1379 users created an original project
in one of the three months (January – March 2012), 533 created a
project in each of two months, and 313 created a project in all
three months. Thus, 2225 users (67% boys and 33% girls,
reflective of the broader Scratch population) who created at least 1
project across a three-month period formed the new sample from
which all further analyses reported in this paper are drawn. This
sub-sample represents about 44.5% of the initial random sample
of users and is the same sample used in our earlier analysis of
participation profiles [12].
The reason we focus on this sub-sample is that the remaining
2779 users did no activities that we could access through the kinds
of backend data available to us. In other words, though these users
logged on to Scratch and likely browsed the site during the time of
the study, we do not have information about what they did on
Scratch. Most likely they viewed webpages without leaving any
networking residues; they did not click “like” or favorite projects;
they did not leave comments. Data about what users viewed was
unavailable to us—it was not collected by the Scratch Team at
MIT. We describe this more in our earlier analysis [12] and in
section 5.4. This division of users who created and shared projects
(and of those some who left comments or “love-its” or favorites)
and those who did not create and share projects was a surprise to
us. Based on our analyses, sharing a project on the Scratch site
defines the baseline of all other active participation beyond
viewing.

4.1.1 Identifying Programming Concepts in Scratch
Projects
Of primary interest in this paper are the Scratch programs or
projects users created and the kinds of programming scripts used
in them. In our project data we have the number of each kind of
programming block created in every new project by month. These
data do not include any projects that were remixes of other
projects on the Scratch site. Our logfiles contain records of the
total number of forever loops, broadcast commands, and other
scripts created by a user in a given month. Following the models
used by Maloney and colleagues [28] and Fadjo [11] to analyze
Scratch projects, we first created groupings of Scratch commands
(or scripts) that fit together conceptually, including Loops,
Conditionals, Broadcasts, Operators, Booleans, Sensing, and
Variables (capitalized for ease of identifying these categories
throughout the text). For instance, in Loops we included all non-
conditional loops in Scratch, namely the “forever” and the
“repeat [] times” loops (the only non-conditional loops in

WiPSCE 2014 Research Papers

4

Scratch). In Operators we included all operators that had
mathematical functions1, such as the “[] + []”, “[] – []”, and
“[] < []”. After initial analyses we determined that five
categories of Scratch programming concepts helped to
differentiate profile patterns amongst users: Loops, Booleans,
Operators, Broadcasts, and Variables. Each of these is illustrative
of the use of a particular programming concept (see also, [6]):
Loops are repeating functions; Booleans involve logic statements
such as and, not, and or; Operators are mathematical functions
and are used only in conditional statements so they are also a
stand-in for the presence of conditionals; Broadcasts are a form of
synchronization and event-driven programming in Scratch; and
Variables include scripts related to abstract user-created variables.

For further analysis, we divided each programming category
roughly equally into four quartiles. We did this in order to see
whether there were differences between creators who used larger
or smaller numbers of blocks in a particular category. For
instance, did it matter whether a creator used one or two loops in
her programs for a month or whether she used eight or nine? Did
that help to differentiate any of the users in terms of their
programming? Quartile 0 (Q0) means that the user did not use any
scripts involving that particular concept (i.e., a “0” in Loops
means that no loops were used in that users’ project within a given
month). The only exception for this is Broadcast which requires at
least two scripts to work (broadcast [message] and when I receive
[message]) so the value for Q0 is 0-1 for that concept. We divided
all other values into three parts, as equivalent as possible keeping
whole numbers. These are labeled 1, 2, and 3, and are shown in
Table 1.

Table 1. Quartile values for programming concepts
 Loop Boolean Operator Broadcast Variable

Q0 0 0 0 0-1 0
Q1 1-3 1-2 1-6 2-4 1-7
Q2 4-11 3-10 7-22 5-11 8-27
Q3 12+ 11+ 23+ 12+ 28+

4.2 Methods

4.2.1 Programming profiles: latent class analysis of
programming concepts
To identify communities of similar Scratch users based their
programing preferences, we used a series of latent class analyses
(LCAs) across each of three months (for more details, see [33]).
The process of LCA identifies the maximum number of latent
classes (groups of similar individuals) based a set of observable
variables and model fit indices [18; 32]. For example, given a set
of observable programming concepts (e.g., loops, booleans) and
the extent they are used, LCA identifies and groups individuals
with similar programming profiles into latent classes.

There are two main advantages of using LCA over other methods
(e.g., mean split, cluster analyses). First, it relies on model fitting
statistics and substantive interpretation to identify the optimal
number of latent classes [18; 32]. LCA is an iterative process that

1 Initially we separated mathematical operators like addition and
subtraction from comparative operators such as “less than” and “equal to.”
However there was no difference in the users who used these commands,
so we created a single category of operators.

compares models with a particular number of latent classes with a
model with one less class. For example, LCA would first examine
whether a model with two latent classes (e.g., novice vs. advanced
users) would be provide a better fit than a one-class model (e.g.,
novice users). If so, LCA continues to test models with additional
latent classes until model fit indices and substantive interpretation
are satisfactory. Given the potential ambiguity in model fit
indices, the substantive aspect of LCA allows the researcher
flexibility in identifying the optimal number of latent classes to
balance statistical and theoretical interpretation of each class. This
avoids the potential of identifying classes with only a few users or
a class that is generally similar to another except for minor
statistical differences in specific observed activity. The second
advantage of LCA is its ability to create latent classes with unique
profiles of activities. That is, each latent class contains a profile of
estimated means and corresponding probability of being classified
into that class. For example, novice Scratch users may have a
profile that shows an exclusive use loops at a high level, while
advanced users may use loops as well as Booleans and operators
at high levels. Each participant is then given probabilities of being
classified into each class, and generally users have a highest-class
probability (i.e., the most likely membership class).

4.2.2 Participant profiles: Membership and gender
To test whether membership or gender were proportionately
represented in each of the latent classes, multiple chi-square tests
for independence analyses were performed for each of the three
months. These analyses were conducted based on participants’
highest class assignment, self-reported gender, and membership
(the total lifetime of the user’s account as of January 2012).
Membership was distributed across four categories of members:
users with brand new accounts created in January 2012 (newbies),
users with accounts up to three months old (young), accounts up
to 12 months old (one-year), and accounts over one-year old
(oldies). A significant chi-square test would show that there was a
relationship between gender (or membership) and programming
profiles. Follow-up standardize residual scores would test whether
the actual count of individuals in a given cell is greater than (z >
|2| or |3|) or less than expected (z < |2 or 3|) at p = .05 or p = .01.
For example, a significant standardized residual would indicate
that the number of females in a given membership class is
significant greater (z > 2) or less (z < 2) than expected. See Table
2 for details on the distribution of membership.

Table 2. Distribution of Scratch membership

Scratch Membership Frequency Percent of
Sample

Newbie (new account) 1436 28.7
Young (0-3 months) 1364 27.3

One-year (4-12 months) 973 19.4
Oldie (12+ months) 1165 23.3

4.2.3 Comparing relationships between programming
profiles to participation profiles.
Building on our prior study of participation patterns in
Scratch.mit.edu [12], we compared participation profiles with
programming profiles. Our earlier study used LCA to identify the
number of latent classes based on general practices of online
participation. Table 3 illustrates and provides definitions for the
participation profiles we identified. The study used six common
participation, collaboration, and communicating practices on
Scratch.mit.edu (i.e., remixing, downloading, commenting,

WiPSCE 2014 Research Papers

5

favorites, love-its, and friend requests) to identify the number of
latent classes amongst project creators. To examine whether these
participation profiles were distributed equally, or rather
proportionately, across the programming profiles, we conducted a
chi-square test for independence analysis.

Table 3. Latent classes of Scratch users who created and
shared projects in January – March 2012 (n=2225)

Name Description

Low Network

Creates & shares projects but
does nothing else visible on
the site.

Downloaders All of the above + downloads
projects

Commenters All of the above + comments
on projects

Networkers
All of the above + some
likelihood of “love-its” or
“favorites” and some
friending

Pr
oj

ec
t C

re
at

or
s

High Network
All of the above + usage of
both “love-its,” “favorites,”
and friending, as well as a
higher likelihood of remixing

5. FINDINGS
The results from our analyses of youth programmers in the wild
fall into two broad categories: expected and unexpected findings
of computational participation. On the expected side of findings,
we were able to identify stable programming profiles with one
class containing the most sophisticated programmers. We also
found that two groups, girls and newcomers to the community,
were relatively absent in that class with the most sophisticated
programmers. On the unexpected side of findings, we observed an
overall lack of relationship between programming profiles and
participation profiles, those latter being profiles that indicate
overall activity on the site as captured in the logfiles [12]. In the
following sections, we explain these findings in more detail.

5.1 Programming Profiles
Our analysis identified four latent classes, or unique groups, of
Scratch youth programmers, hereafter called “programming
profiles” (see Appendix for more details in determining these
classes). Model indices and posterior probabilities revealed very
similar classes across the three months (see Figure 3). These
findings indicate qualitative differences among the four groups of
users who differ in their levels of programming knowledge and
use; however, these classes of users are consistent across time and
situations, regardless of the number of users who created projects
in a given month (in January, 1770 users created projects; in
February 921 users; and in March, 693 users). In describing these
four unique groups, the profiles suggest different usage levels of
programming concepts and thus our descriptors range from
beginners to experienced (see Table 4).

Table 4. Description and percentage of user classified in each programming profiles by month (N = 1719).
Programming Profile Description January February March

Class 1: Beginners

Smaller, simpler projects: Used
a relatively low percentage

(quartile 1) of loops and almost
no other advanced concepts.

58.4% 58.1% 51.7%

Class 2: Intermediate
Middle-sized, more complex

projects: Used all programming
concepts except for Booleans

18.8% 16.2% 17.3%

Class 3: Advanced Middle-sized projects including
Booleans. 19.0% 16.2% 18.0%

Class 4: Experienced Largest projects including
Booleans 8.0% 11.2% 13.0%

Figure 3. Latent class analyses for January, February, and March 2012, respectively

WiPSCE 2014 Research Papers

6

The largest class of project creators (Class 1, Beginners) uses a
minimal amount of loops (quartile 1, 1-3 loops) and almost no
other programming concepts we studied. These users seem to
create relatively small and simple projects with few if any
advanced kinds of commands. There is a relatively small
likelihood that these users introduce operators, broadcasts, or
variables. The second class of project creators (Class 2,
Intermediate) introduces operators (i.e., conditionals) and
variables into their Scratch programming projects and also utilizes
more loops (quartile 2, 4-11 loops). The third and fourth classes
both use Booleans. The main difference between the two is the
number of Booleans and other advanced concepts they use. Class
3 (Advanced) uses roughly the same number of operators and
variables as Class 2. Class 4 (Experienced) uses more of
everything, suggesting to us that these projects are larger and
more complex or possibly that these users simply create a larger
number of projects with more (or more repetitious) advanced
commands in a given month.

Our naming of these groups as Beginner, Intermediate, Advanced,
and Experienced may not be reflective of the actual sophistication
of these users’ programs. For instance, smaller projects with
advanced commands (Class 3) might actually imply greater
sophistication. However, given the trends we relate later in this
paper, particularly who is in the Class 4 (Experienced) group, this
class appears to be more elite and more invested overall on the
site.

5.2 Length of Membership Differences in
Programming Profiles
Further analysis of the Scratch users’ programming profiles
revealed that membership, as indicated by account lifetime,
matters somewhat (see Table 5). Not unexpectedly, our class of
Experienced Programmers (Class 4) are less likely to be newbies
(z = –2.0) and more likely to be oldtimers (z = 2.1). Confirming
this trend, Intermediate Programmers (Class 2) who utilized both
basic and intermediate programming are less likely to be one-year
users (z = –2.7). Because these were the only observed significant
differences in distributions, we conclude that length of
membership does not play a large a role in terms of the content of
programming. For example, within classes of Beginners and
Advanced Programmers, there are (proportionally) equal number
individuals across the four account lifetimes, and even within
Beginners (Class 1) and Experienced (Class 4) Programmers,
there are Scratch members with a year or less of being registered
on the site.

Table 5. Programming profiles (class) by membership count.

 Account Lifetime

Class Newbies Young One-
year Oldbies

1 384 283 179 138

2 117 111 34~ 51

3 92 66 44 42

4 37~ 39 29 31+

Chi-square (9) = 24.799, p = .003

+ standardized residuals (z) is greater than 2.0; this indicates a greater
proportion of individuals than expected for the cell.

~ standardized residuals (z) is less than -2.0; this indicates a smaller
proportion of individuals than expected for the cell.

5.3 Gender Differences in Programming
Profiles
In addition to length of membership in Scratch community,
gender had a significant impact in which class Scratch
programmers ended up. We know that girls only represent one-
third of all registered members on the Scratch site (as measured
by self-reported gender). The distribution in our overall sample
reflected this distribution of self-reported gender on the Scratch
site: 33% female and 67% male. We tested whether gender was
proportionately represented in each of the latent programming
classes (see Table 6). We found significant differences in regard
to gender within three programming profiles, chi-square (3) =
61.359, p < .001. Specifically, there were more girls than expected
in the Beginner Class (z = 3.7) and fewer girls than expected in
the Advanced Class (z= –2.9) and in the Experienced Class (z= –
4.1). Similarly there were fewer boys than expected in the
Beginner Class (z = –2.7), and more boys than expected in the
Advanced Class (z = 2.1) and especially the Experienced Class (z
= 3.0).

Table 6. Programming profiles (class) by Gender count.

Class Boy Girls

1 575~ 409++

2 217 96

3 186+ 58~~
4 117++ 19~~

Chi-square (3) = 61.59, p < .001

+ standardized residuals (z) is greater than 2.0; ++ z is greater than 3.3;
these indicate a greater proportion of individuals than expected for the
cell.

~z is less than -2.0; ~~ z is less than -3.3; these indicate a smaller
proportion of individuals than expected for the cell.

5.4 Relationship between Programming
Profiles and Participation Profiles
In a final step, we examined the relationship between
programming profiles and participation profiles, connecting our
study of programming concepts with earlier work [12] on levels of
participation such as downloading, commenting, remixing,
“loving,” or friending in the online Scratch community. To our
surprise, the analysis did not reveal a significant link, chi-square
(12) = 20.791, p = .054. In general, the four classes of
programmers, from beginners to experienced, existed equally
across the five general participation classes and vice versa (see
Table 7). Regardless of how involved users were on the Scratch
site in regard to either downloading, commenting, remixing,
“loving,” or friending, there was no relationship to the types of
programming concepts they used in their projects or how
“advanced” their programming was. In other words, Scratch
learners could be low networkers with intermediate or small
Boolean programming profiles or commenters only programming
with the simpler loops. There was, however, one exception to this
trend: high networkers on the Scratch site were strongly likely to
be in the Experienced Class 4 of programmers (z = 3.0). This was
the only link between programming and participation, and again it
occurred in the high pole of both programming and participation.
So the most experienced Scratch users online are also the most
likely to create the most advanced projects.

WiPSCE 2014 Research Papers

7

Table 7. Programming profiles by participation profile count.

Programming Profiles

Participation
Profiles 1 3 2 4

Low Networker 331 68 89 33
Downloaders 223 68 85 33
Commenters 137 31 43 18
Networkers 196 46 63 25

High Networker 97 31 33 27+
Chi-square (12) = 20.791, p = .054

+ standardized residuals (z) is greater than 2.0; this indicates a
greater proportion of individuals than expected for the cell

6. DISCUSSION
In this paper, we examined computational participation in the
wild, the type of self-organized and self-directed activities that
have opened alternative paths for youth to become engaged in
programming. What did we learn about informal programmers?
We learned that there are stable and cohesive classes of
programmers in the Scratch community that reflect a range of
experience based on their use of programming concepts. This
work builds and expands on an earlier study of an informal
programming community [28]. In the absence of other studies that
have examined youth programming in informal learning
communities, these findings present a first portrait of how learners
in such communities are distributed. In the following sections, we
discuss the nature and equity of computational participation in
informal programming communities, address limitations of our
analytical approach, and outline directions for future research.

6.1 Nature and Equity of Computational
Participation
Our findings indicate that there is a highly experienced group of
participants who are the most involved and the most advanced
programmers on the Scratch site—not a surprising result given
what we know from prior research in another massive online
informal youth community, albeit not focused on programming
[23]. While large number of participants in sites with millions of
registered users result in overall high activity, it is in fact often the
smallest group of users that drives the most activities. Just like in
many classrooms, we have a few students who are actively
participating in class activities most of the time while others are
occasionally engaged and a large group of students remains at the
periphery. In other words, while everyone has access to the site,
not everyone is as highly engaged and contributes in the same
manner in informal learning communities. It is also here where we
found the most significant differences in regard to gender and
membership.

We found significant differences in length of Scratch
membership, or account lifetimes, as well as high networkers in
regard to Experienced programming profiles. The most senior
Scratch users, those who have spent the longest time on Scratch
and still frequent the site, are the most likely to program with
advanced programming concepts with the greatest frequency of
use. On the other end of the pole, those who have created new
accounts are less likely to have this programming profile. It makes
some sense that those who have frequented Scratch the longest are

more likely to build more complex, larger programs. Yet
interestingly there are few differences between programming and
participation outside of this high pole. Why might this be? One
explanation is that users may join the Scratch community with
diverse prior expertise in programming. Our own studies of after-
school clubs have shown that some youth are reluctant to post a
project to the Scratch community until they feel they have enough
expertise and their projects are good enough to be comparable to
others’ projects [25]. Thus new users may already come with
significant prior expertise in programming in Scratch. On the
other hand, many classrooms and workshops have youth post
projects online frequently at the end of a class for the purpose of
data storage or to get feedback from others online, even if (or
because) projects are incomplete and in-progress [14; 22]. This
may account for a few reasons why there is such diversity of
programming profile independent of participation and
membership except at the highest poles of Scratch programming.

We also found significant gender differences in Beginners and
Experienced classes. However, there were no significant gender
differences in Intermediate Class, the group that utilized operators
and variables. Proponents of broadening participation in
computing may take some encouragement from this, as it suggests
that at an intermediate level of novice programming in Scratch
online, girls are just as well represented as boys. Further in the
Advanced Class, which did use Booleans, the gender differences
were much smaller than in Beginner and Experienced Classes.
Our analyses indicate that the greatest differences in gender are at
the extreme poles of the programming profiles.

Putting this into broader context, in our analysis of participation
patterns on the Scratch website, we found almost no differences in
regard to gender and participation; each profile of Scratch
participation was proportionately balanced in regard to gender
distribution [12]. This puts the differences in gender at the high
pole of programming (Experienced) in an interesting light,
especially since that class of programming showed the only
significant link to a particular participation profile (the high
networkers) in which there were no gender differences over time.
Why is there a gender difference in programming at this high
programming profile when there is no difference in gender with
the linked participation profile? In the tech community, there has
been a strong push to involve women in the socialization of
computer science, assuming that such socialization will result in
more involved and higher levels of coding. Yet these results
suggest we need better understanding of how social engagement
might relate to programming engagement. As Ito et al [20] might
put it, hanging out and messing around, even at high levels, may
not directly result in “geeking out.”

Given the marked conversation on the need to broaden
participation in computing [29; 30], these gender differences
suggest the need not just to broaden participation in computing
but also to deepen participation in computing, especially at the
higher levels that may introduce more complex programming
concepts. In other words, computational participation is not just a
matter of quantity but also one of quality of engagement.

6.2 Limitations of Data and Analysis
While these findings provide us with broad trends of youth
computational participation in an informal online community,
they also come with certain limitations. Notably, in this dataset we
cannot say how effectively scripts were used in Scratch projects.
We can only describe how many of them there are in the sum total
of projects uploaded by each user in a given month. Related we

WiPSCE 2014 Research Papers

8

cannot say exactly how large the projects are in terms of the
number of programming commands. Our approximations of size
in this study are solely related to the number of certain kinds of
concepts used in the projects in a given month. This is admittedly
a limitation in attempting to describe the sophistication and
complexity of projects, however this approach was adequate given
our goal of understanding of broad trends of programming in
Scratch projects uploaded on a massive social networking forum.

6.3 Directions for Future Research
It is clear that we are just at the initial phase of mapping out what
we know about learners in informal programming communities.
Further steps should include developing better approaches to
analyze programming, examining trajectories of computational
participation, and broadening access to deeper computational
participation. To begin with, we need address the challenges of
analyzing not just the quantity but also the quality of beginners’
programming. We already noted limitations in our logfile data set
and how programming concepts captured different levels of
engagement with Scratch. At first cut, counting the number of
programming concepts in a Scratch project is a reasonable
approach in capturing some level of difficulty, especially since we
know from prior research that not all programming concepts are
used equally in informal programming communities. We need to
develop more nuanced descriptions of programming that go
beyond pure project or block counts. While these first measures
have been useful on a massive scale, they only reveal profiles on a
surface level. Developing ways to capture context or sets of
scripts on a massive scale would provide more nuanced ways to
understand youth programming [13].

Furthermore, we need to situate findings from patterns in massive
participation in relation to trajectories of individual learners, for
bringing in individual case studies and ethnographic work on
specific groups of users. We know from previous research that
participants even within a class or cluster can look very different
[23]. In fact we would expect quite a lot of diversity if we started
looking at individuals and their trajectories of participation on the
site even within a particular programming class. Examining
different programming profiles, we know that programming might
be easier in the beginning and then get exponentially more
difficult. Moving from the Beginners to Advanced class appears
to be more than just a step, it’s an exponential jump. In this
context, it might also be important to conduct transition analyses
of kids’ programming profiles over many months and possibly
years. Tracing different pathways of users on the road to
Advanced or Experienced programmers might provide
illumination as to supports and interventions that help them reach
that status. Lastly, our findings refer to an older version of the
Scratch community, prior to the release of Scratch 2.0 in May
2013. The release of Scratch 2.0 could change programming
profiles significantly; participation has quadrupled, users can now
program directly on the site, new scripts (including functions)
have been added, and many other new features incorporated such
as greater ease of grabbing programming scripts from others’
projects. New research is needed to see whether and how these
features have facilitated different aspects of computational
participation.

Another central goal of understanding learners in informal
programming communities is to broaden access and deepen
computational participation at large. We noted in our analysis a
few significant differences in gender and membership
participation that seem to replicate longstanding differences in
computing communities [30]. Given the renewed interest in

programming, we need to think about pathways of getting people
not just into the introductory levels of programming but also into
deeper, more sophisticated levels. It is a qualitative shift from
broadening access to deepening participation that is not just about
time spent in an activity or community but also about the kind of
programming activities beginners become involved in. From some
preliminary analysis on the Scratch community we know that girls
become heavily involved in live role-playing games, often making
thousands of comments but engaging in little programming [37].
Such projects indicate potential gateway activities into
programming, but they also indicate a need for new instructional
designs that foster qualitatively more complex types of
programming. In this way our learning about programming in the
wild can inform programming by design for broadening and
deepening computational participation for all.

Finally, we need to develop better ways to connect what we know
about learners and computational participation by choice—in the
wild—with computational participation by design, the
instructional efforts in schools. Over the last two decades, much
research in K-12 education has shown the significant relationship
between informal and formal learning opportunities for
developing and maintaining interest as well as practicing and
deepening understanding in subject matter and skills. Rather than
seeing them as isolated contexts, they can be harnessed for
improved outreach and for better learning in mutually beneficial
ways.

7. ACKNOWLEDGEMENTS
This material is based upon work supported by a collaborative
grant from the National Science Foundation (NSF#1027736) to
Mitchel Resnick, Yasmin Kafai and Yochai Benkler. The views
expressed are those of the authors and do not necessarily represent
the views of the National Science Foundation, Utah State
University, St. Mary’s College, or the University of Pennsylvania.
Special thanks to Nicole Forsgren Velasquez and Taylor Martin
for input on analyses and to Nicole Forsgren Velaquez, Xavier
Velasquez, and Whitney King for reading earlier versions of this
paper. Particular thanks to Anant Seethalakshmi for help with
gathering data and to the Scratch Team for providing repeated
feedback on analysis.

8. REFERENCES
[1] Y. Benkler. The wealth of networks: How social production

transforms markets and freedom. New Haven and London:
Yale University Press. 2006.

[2] M. Berland, and V. R. Lee. Collaborative strategic board
games as a site for distributed computational thinking.
International Journal of Game-Based Learning 1(2): 65-81,
2011.

[3] K. Brennan. Best of both worlds: Issues of structure and
agency in computational creation, in and out of school.
Unpublished dissertation, Massachusetts Institute of
Technology. 2013.

[4] K. Brennan, Audience in the service of learning: How kids
negotiate attention in an online community of interactive
media designers. Learning, Media, and Technology. In press.

[5] K. Brennan and M. Resnick. Imagining, creating, playing,
sharing, reflecting: How online community supports young
people as designers of interactive media. In N. Lavigne and
C. Mouza (Eds.), Emerging Technologies for the Classroom:
A Learning Sciences Perspective, 5-17, 2013.

WiPSCE 2014 Research Papers

9

[6] K. Brennan and M. Resnick. New frameworks for studying
and assessing the development of computational thinking.
Paper presented at annual American Educational Research
Association meeting, Vancouver, BC, Canada, April 2012.

[7] A. S. Bruckman. MOOSE Crossing: Construction,
community, and learning in a networked virtual world for
kids. Doctoral dissertation, Massachusetts Institute of
Technology. 1997.

[8] A. Bruckman. Situated support for learning: Storm's
weekend with Rachael. The Journal of the Learning
Sciences, 9(3): 329-372, 2000.

[9] C. C. Ching, and Y. B. Kafai. Peer pedagogy: Student
collaboration and reflection in a learning-through-design
project. The Teachers College Record, 110(12): 2601-2632,
2008.

[10] J. Denner, L. Werner, and E. Ortiz. Computer games created
by middle school girls: Can they be used to measure
understanding of computer science concepts? Computers &
Education, 58(1), 240-249: 2012.

[11] C. L. Fadjo. Developing computational thinking through
grounded embodied cognition. Unpublished dissertation.
Columbia University, 2012.

[12] D. A. Fields, M. Giang, and Y. B. Kafai. Understanding
collaborative practices in the Scratch online community:
Patterns of participation among youth designers. In N.
Rummel, M. Kapur, M. Nathan, & S. Puntambekar (Eds),
To see the world and a grain of sand: Learning across levels
of space, time, and scale: CSCL 2013 Conference
Proceedings, Volume 1, Full Papers & Symposia.
International Society of the Learning Sciences: Madison, WI,
200-207, 2013.

[13] D. A. Fields, & H. T. Martin. Macro data for micro learning:
Developing FUN! for automated assessment of
computational thinking in Scratch. Proposal [funded].
Washington, DC: National Science Foundation grant
#1319938, 2013.

[14] D. A. Fields, V. Vasudevan, and Y. B. Kafai, Y. B. The
programmers’ collective: Connecting collaboration and
computation in a high school Scratch mashup coding
workshop. In J. L. Polman, E. A. Kyza, D. K. O'Neill, I.
Tabak, W. R. Penuel, A. S. Jurow, A. S., K. O'Connor, T.
Lee and L. D'Amico (Eds.). Learning and Becoming in
Practice: The International Conference of the Learning
Sciences (ICLS) 2014, Volume 1. Boulder, CO: International
Society of the Learning Sciences, pp. 855-862, 2014.

[15] N. Forsgren Velasquez, D. A. Fields, D. Olsen, H. T. Martin,
A. Strommer, M. C. Sheperd, and Y. B. Kafai. Novice
programmers talking about projects: What automated text
analysis reveals about online Scratch users’ comments. In the
Proceedings of the Annual Hawaii International Conference
on System Sciences (HICSS). Waikoloa, Hawaii. IEEE,
December 2013.

[16] S. M. Grimes and D. A. Fields. Kids online: A new research
agenda for understanding social networking forums. New
York. The Joan Ganz Cooney Center at Sesame Workshop.
Available online at
http://www.joanganzcooneycenter.org/reports-38.html. 2012.

[17] S. Grover and R. Pea. Computational Thinking in K–12 A
Review of the State of the Field. Educational Researcher,
42(1): 38-43, 2013.

[18] J. Hagenaars and A. McCutcheon (Eds). Applied Latent
Class Analysis. Cambridge, UK: Cambridge University
Press, 2002.

[19] K. Healy and A. Schussman. The ecology of Open-Source
software development. Working paper available at:
opensource.mit.edu/papers/healyschussman.pdf (Accessed
November 21, 2011), 2003.

[20] M. Ito, S. Baumer, M. Bittanti, d. boyd, R. Cody, B. Herr, H.
A. Horst, P. G. Lange, D. Mahendran, K. Martinez, C. J.
Pascoe, D. Perkel, L. Robinson, C. Sims and L. Tripp.
Hanging out, messing around, and geeking out: Living and
learning with new media. Cambridge, Massachusetts: MIT
Press, 2010.

[21] Y. B. Kafai. Minds in play: Computer game design as a
context for children's learning. New York, New York:
Routledge, 1995.

[22] Y. B. Kafai and Q. Burke. Connected code: Why children
need to learn programming. Cambridge, Massachusetts: MIT
Press, 2014.

[23] Y. B. Kafai and D. A. Fields. Connecting play:
Understanding multimodal participation in virtual worlds. In
Proceedings of the 14th ACM international conference on
Multimodal interaction (ICMI '12). ACM, New York, New
York, USA, 265-272, 2012.

[24] Y. B. Kafai and D. A. Fields. Connected Play: Tweens in a
Virtual World. Cambridge, Massachusetts: MIT Press, 2013.

[25] Y. B. Kafai, D. A. Fields and W. Q. Burke. Entering the
clubhouse: Case studies of young programmers joining the
online Scratch communities. Journal of Organizational and
End-User Computing, 22(2): 21-35, 2010.

[26] Y. B. Kafai, D. A. Fields, R. Roque, W. Q. Burke and A.
Monroy-Hernández . Collaborative agency in youth online
and offline creative production in Scratch. Research and
Practice in Technology Enhanced Learning, 7(2): 63-87,
2012.

[27] C. Kelleher and R. Pausch. Using storytelling to motivate
programming. Communications of the ACM, 50(7): 58-64,
2007.

[28] J. H. Maloney, K. Peppler, Y. B. Kafai, M. Resnick and N.
Rusk. Programming by choice: Urban youth learning
programming with scratch. ACM SIGCSE Bulletin, 40(1):
367–371, 2008.

[29] J. Margolis, R. Estrella, J. Goode, J. Holme and K. Nao.
Stuck in the Shallow End: Education, Race, and Computing.
Cambridge, Massachusetts: MIT Press., 2008

[30] J. Margolis and A. Fisher. Unlocking the Clubhouse.
Cambridge, Massachusetts: MIT Press, 2002.

[31] A. Monroy-Hernandez. Designing for remixing: Supporting
an online community of amateur creators. Unpublished
dissertation. Cambridge, Massachusetts: MIT, 2012.

[32] B. Muthen. Statistical and substantive checking in growth
mixture modeling. Retrieved January 2007 from
http://www.gseis.ucla.edu/faculty/muthen/full_paper_list.h,
2002.

[33] B. Muthen and L. Muthen. Integrating person-centered and
variable-centered analyses: Growth mixture modeling with
latent trajectory classes. Alcohol Clinical Experimental
Research, 24(6): 882–891, 2001.

WiPSCE 2014 Research Papers

10

[34] L. Porter, M. Guzdial, C. McDowell and B. Simon. Success
in introductory programming: what works? Communications
of ACM, 56(8): 34-36, 2013.

[35] M. Resnick, J. Maloney, A. M. Hernández, N. Rusk, E.
Eastmond, K. Brennan, A. D. Millner, E. Rosenbaum, J.
Silver, B. Silverman and Y. B. Kafai. Scratch: Programming
for everyone. Communications of the ACM, 52(11): 60–67,
2009.

[36] A. Robbins, J. Rountree, and N. Rountree. Learning and
Teaching Programming: A Review and Discussion.
Computer Science Education, 13(2): 137-72, 2003.

[37] J. L. Siegel, R. Roque, D. Low, Y. B. Kafai and D. A. Fields.
Understanding the creative and collaborative literacy
practices in the Scratch online community: A role playing
case study. Paper presented at the 33rd Annual Ethnography in
Education Research Forum, Philadelphia, PA, February
2012.

[38] E. Soloway and J. Spohrer. Empirical studies of novice
programmers. Norwood, NJ: Ablex Publishing, 1990.

[39] J. Wing. Computational Thinking. Communications of the
ACM, 49 (3): 33-35, 2006.

[40] S. Yardi and A. Bruckman. What is computing? Bridging the
gap between teenagers’ perceptions and graduate students’
experiences. In Proceedings of the 3rd International
Workshop on Computing Education Research. ACM,
Atlanta, GA, 39-50, 2007.

9. APPENDIX
Based on model indices (see Tables 8a-c below), LCA results
identify four classes of programming users. That is, large
decreases prior to and leveling off of model indices values (aBIC,
BIC, AIC) after the four-class model indicate more complex
models add little additional statistical depth. In addition, although
LMR p-values and entropy values suggest a fifth class or higher
may provide a better fit, substantive examinations of these larger
classes revealed redundant classes (with marginal differences in
programming use) along with small class sizes consisting of less
than 1.7% of users (12-28 users among the 1719). For each
participant, LCA generates probabilities for membership into each
class, and generally one class has the highest probability of
members. For instance, results show the January users classified
into their highest probability latent class had a 95-100%
probability of being in that class, and a 0-5% of being in the other
classes (see Table 9a); these numbers were similar for February
(96-100%; 0-4%) (Table 9b) and March (95-100%; 0-5%) (Table
9c). Taken together, the interpretation of the four-class model
provided a better, more parsimonious and substantive
interpretation of the data. Table 8a to 1c displays the fit indices
for January, February, and March.

Table 8. Model fit indices for January to March.

Table 8a. Model fit indices for January

 January: N = 1719
of

classes likelihood
free
par BIC aBIC

LMR
p-value Entropy AIC

1 -13021.72 10 26117.927 26086.158 N/A N/A 26063.432
2 -11093.31 16 22305.81 22254.979 0.0000 0.948 22218.618

3 -10152.07 22 20468.028 20398.137 0.0000 0.95 20348.14

4 -9699.059 28 19606.705 19517.752 0.0000 0.963 19454.119
5 -9494.66 34 19242.602 19134.588 0.0109 0.973 19057.319

6 -8994.426 40 18286.832 18159.757 0.0112 0.999 18068.853
7 -8935.328 46 18213.332 18067.196 0.0000 0.999 17962.656

Table 8b. Model fit indices for February

 February N = 1719
of

classes likelihood
free
par BIC aBIC

LMR
p-value Entropy AIC

1 -7057.718 10 14183.482 14151.724 NA NA 14135.436
2 -5804.549 16 11717.971 11667.157 0.0000 0.967 11641.097

3 -5244.767 22 10639.236 10569.368 0.0001 0.974 10533.535

4 -5032.713 28 10255.955 10167.032 0.0034 0.976 10121.426
5 -4885.536 34 10002.428 9894.449 0.0002 0.983 9839.071

6 -4707.744 40 9687.673 9560.64 0.4797 0.952 9495.489

7 -4485.267 46 9283.546 9137.457 0.0072 0.999 9062.533

Table 8c. Model fit indices for March

 March N = 1719
of

classes likelihood
free
par BIC aBIC

LMR
p-value Entropy AIC

1 -5355.246 10 10775.697 10743.946 NA NA 10730.491

2 -4375.486 16 8855.302 8804.5 0.0000 0.974 8782.972
3 -4033.562 22 8210.577 8140.724 0.0011 0.966 8111.123

4 -3902.107 28 7986.791 7897.888 0.0028 0.970 7860.214
5 -3789.717 34 7801.134 7693.181 0.0001 0.979 7647.433

6 -3674.031 40 7608.886 7481.882 0.0080 0.997 7428.061

7 -3554.136 46 7408.221 7262.166 0.0759 0.997 7200.272

Table 9. Average Latent Class Probabilities from January to
March.

Most Likely Latent Class Membership (Row) by Latent Class
(Column)

Table 9a. January: Average Latent Class Probabilities
 1 2 3 4

1 0.979 0.019 0.002 0.000

2 0.001 0.950 0.000 0.000

3 0.050 0.000 0.999 0.000

4 0.000 0.000 0.000 1.000

Table 9b. February: Average Latent Class Probabilities
 1 2 3 4

1 0.990 0.008 0.002 0.000

2 0.005 0.960 0.000 0.000

3 0.040 0.002 0.993 0.000

4 0.000 0.000 0.000 1.000

Table 9c. March: Average Latent Class Probabilities
 1 2 3 4

1 0.988 0.002 0.008 0.002

2 0.003 0.952 0.048 0.000

3 0.000 0.011 0.987 0.000

4 0.000 0.000 0.000 1.000

WiPSCE 2014 Research Papers

11

